Solutions 3

Functoriality, Quasi-coherent Sheaves on $\operatorname{Proj}(R)$

1. (Tensor Operations on Sheaves) Let \mathcal{F} be a sheaf of \mathcal{O}_{X}-modules and $n \in \mathbb{Z}^{\geqslant 0}$. We define the n-th exterior power $\bigwedge^{n} \mathcal{F}$ (resp. n-th symmetric power $S y m^{n} \mathcal{F}$) of \mathcal{F} by taking the sheaf associated to the presheaf which to each open set U assigns the $\mathcal{O}_{X}(U)$-module $\bigwedge_{\mathcal{O}_{X}(U)}^{n} \mathcal{F}(U)$ (resp. $\left.\operatorname{Sym}_{\mathcal{O}_{X}(U)}^{n} \mathcal{F}(U)\right)$.
(a) Suppose that if \mathcal{F} is locally free of $\operatorname{rank} r$, then $\bigwedge^{n} \mathcal{F}$ and $\operatorname{Sym}^{n} \mathcal{F}$ are locally free of ranks $\binom{r}{n}$ and $\binom{r+n-1}{n}$ respectively.
(b) With \mathcal{F} as in (a) show that for each $n=0, \ldots, r$ the multiplication map $\bigwedge^{n} \mathcal{F} \otimes \bigwedge^{r-n} \mathcal{F} \rightarrow \bigwedge^{r} \mathcal{F}$ is a perfect pairing, i.e., it induces an isomorphism $\bigwedge^{n} \mathcal{F} \cong\left(\bigwedge^{r-n} \mathcal{F}\right)^{\vee} \otimes \bigwedge^{r} \mathcal{F}$.
(c) Let $f: X \rightarrow Y$ be a morphism of schemes. Show that f^{*} commutes with Λ^{n} and Sym^{n}.

Solution:

(a) Since the question is local, we may assume that \mathcal{F} is free of rank r. Let $s_{1}, s_{2}, \ldots, s_{r} \in \mathcal{F}(X)$ be a basis, so that $\left.\left.\mathcal{F}(U) \cong \mathcal{O}_{X}(U) s_{1}\right|_{U} \oplus \cdots \oplus \mathcal{O}_{X}(U) s_{r}\right|_{U}$ for all open subsets $U \subset X$. Let

$$
I_{n}:=\left\{\underline{i}=\left(i_{1}, \ldots, i_{n}\right) \mid 1 \leqslant i_{1}<\ldots<i_{n} \leqslant r\right\}
$$

and abbreviate $s_{\underline{i}}:=s_{i_{1}} \wedge \cdots \wedge s_{i_{n}}$ for all $\underline{i} \in I_{n}$. Then for any open $U \subset X$ the n-th exterior power of $\mathcal{F}(U)$ over $\mathcal{O}_{X}(U)$ is a free module with basis $\left\{s_{\underline{i}} \mid \underline{i} \in I_{n}\right\}$. As this is compatible with the restriction maps, the corresponding presheaf is already a free \mathcal{O}_{X}-module of rank $\left|I_{n}\right|=\binom{r}{n}$. In particular it is already a sheaf (whereas it might not be one if \mathcal{F} were not already free). This proves the desired result for $\bigwedge^{n} \mathcal{F}$. The proof for $\operatorname{Sym}^{n} \mathcal{F}$ is completely analogous.
(b) First we note that the tensor product of \mathcal{O}_{X}-modules satisfies a similar universal property as the tensor product of modules over a ring. Let \mathcal{F}, \mathcal{G} and \mathcal{H} be \mathcal{O}_{X}-modules. We call a morphism $\mathcal{F} \times \mathcal{G} \rightarrow \mathcal{H}$ bilinear if the induced morphism at every stalk is bilinear. Giving a morphism of \mathcal{O}_{X}-modules $\mathcal{F} \otimes \mathcal{G} \rightarrow \mathcal{H}$ is equivalent to giving a bilinear morphism $\mathcal{F} \times \mathcal{G} \rightarrow \mathcal{H}$. To prove this, one works over open subsets of X and uses the corresponding universal property for modules to show that a bilinear morphism factors uniquely through the tensor presheaf and then applies the universal property of the sheafification.

We may thus define the multiplication map $\mu: \bigwedge^{n} \mathcal{F} \otimes \bigwedge^{r-n} \mathcal{F} \rightarrow \bigwedge^{r} \mathcal{F}$ as follows: First we have a morphism of presheaves given on each open $U \subset X$ via

$$
\bigwedge_{\mathcal{O}_{X}(U)}^{n} \mathcal{F}(U) \times \bigwedge_{\mathcal{O}_{X}(U)}^{r-n} \mathcal{F}(U) \rightarrow \bigwedge_{\mathcal{O}_{X}(U)}^{r} \mathcal{F}(U),(s, t) \mapsto s \wedge t
$$

This induces a bilinear morphism of sheaves $\bigwedge^{n} \mathcal{F} \times \bigwedge^{r-n} \mathcal{F} \rightarrow \bigwedge^{r} \mathcal{F}$, and we obtain μ from the universal property.
Since \mathcal{F} is locally free, we may apply part (a) and exercise 4 b on Sheet 1 to obtain a natural isomorphism $\left(\bigwedge^{r-n} \mathcal{F}\right)^{\vee} \otimes \bigwedge^{r} \mathcal{F} \cong \mathscr{H}^{\circ}$ m $_{\mathcal{O}_{X}}\left(\bigwedge^{r-n} \mathcal{F}, \bigwedge^{r} \mathcal{F}\right)$. We claim that μ induces a morphism

$$
\alpha: \bigwedge^{n} \mathcal{F} \rightarrow \mathscr{H}^{\prime} m_{\mathcal{O}_{X}}\left(\bigwedge^{r-n} \mathcal{F}, \bigwedge^{r} \mathcal{F}\right)
$$

and that α is an isomorphism. Let $U \subset X$ be open. A section $s \in\left(\bigwedge^{n} \mathcal{F}\right)(U)$ induces a morphism $\left.\left.\left(\bigwedge^{r-n} \mathcal{F}\right)\right|_{U} \rightarrow\left(\bigwedge^{r} \mathcal{F}\right)\right|_{U}$ of sheaves as follows: For each open $V \subset U$, we map $t \in\left(\bigwedge^{r-n} \mathcal{F}\right)(V)$ to $\mu\left(\left.s\right|_{V} \otimes t\right)$. Varying U, this defines the desired morphism α.
To show that α is an isomorphism, we may assume without loss of generality that \mathcal{F} is free of rank r. Then by part (a), we obtain an isomorphism $\bigwedge^{r} \mathcal{F} \cong \mathcal{O}_{X}$, corresponding to a choice of basis $\mathcal{B}:=\left\{s_{1}, \ldots, s_{r}\right\}$ of \mathcal{F}. This allows us to identify the codomain of α with $\left(\bigwedge^{r-n} \mathcal{F}\right)^{\vee}$. Let I and J denote the indexing sets of the basis elements obtained from \mathcal{B} of $\bigwedge^{n} \mathcal{F}$ and $\bigwedge^{r-n} \mathcal{F}$ respectively. By the same calculation as in the calculus of differential forms, the basis $\left\{s_{\bar{i}}\right\}_{\bar{i} \in I}$ of $\bigwedge^{n} \mathcal{F}$ is dual to the basis $\left\{s_{\bar{j}}\right\}_{\bar{j} \in J}$ of $\bigwedge^{r-n} \mathcal{F}$, up to sign for the pairing.
(c) As with tensor products, there is a natural morphism $\alpha: \bigwedge^{n} f^{*} \mathcal{F} \rightarrow f^{*} \bigwedge^{n} \mathcal{F}$. Let M be a free module over a ring R. Consider a ring homomorphism $R \rightarrow S$ and the resulting S-module $N:=S \otimes_{R} M$. There is a natural isomorphism $\bigwedge_{S}^{n} N \cong S \otimes_{R} \bigwedge_{R}^{n} M$. Let $x \in X$ and $y:=f(x)$. The morphism on stalks

$$
\alpha_{x}: \bigwedge_{\mathcal{O}_{X, x}}^{n}\left(\mathcal{O}_{X, x} \otimes_{\mathcal{O}_{Y, y}} \mathcal{F}_{y}\right) \rightarrow \mathcal{O}_{X, x} \otimes_{\mathcal{O}_{Y, y}} \bigwedge_{\mathcal{O}_{Y, y}}^{n} \mathcal{F}_{y}
$$

is precisely this isomorphism. Thus α is an isomorphism.
Variant: The isomorphism $\bigwedge_{S}^{n} N \cong S \otimes_{R} \bigwedge_{R}^{n} M$ implies that formation of the exterior power commutes with localization. We may thus construct α locally over affine opens in X mapping to affine opens in Y under f and then glue.
2. Let $f: X \rightarrow Y$ be a morphism of schemes. Recall that if \mathcal{F} is an \mathcal{O}_{X}-module and \mathcal{E} is an \mathcal{O}_{Y}-module, then there is a natural homomorphism $f_{*} \mathcal{F} \otimes_{\mathcal{O}_{Y}} \mathcal{E} \rightarrow$ $f_{*}\left(\mathcal{F} \otimes_{\mathcal{O}_{X}} f^{*} \mathcal{E}\right)$. Show that this is an isomorphism when \mathcal{E} is a locally free $\mathcal{O}_{Y^{-}}$ module of finite rank.

Solution: Without loss of generality, we may assume that $\mathcal{E} \cong \mathcal{O}_{Y}^{n}$ for some $n \in \mathbb{Z}^{\geqslant 0}$. Then there isomorphisms

$$
\begin{aligned}
f_{*} \mathcal{F} \otimes_{\mathcal{O}_{Y}} \mathcal{E} & \cong\left(f_{*} \mathcal{F} \otimes_{\mathcal{O}_{Y}} \mathcal{O}_{Y}\right)^{n} \\
& \cong\left(f_{*} \mathcal{F}\right)^{n} \\
& \cong f_{*}\left(\mathcal{F}^{n}\right) \\
& \cong f_{*}\left(\mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}^{n}\right) \\
& \cong f_{*}\left(\mathcal{F} \otimes_{\mathcal{O}_{X}} f^{*} \mathcal{O}_{Y}^{n}\right) \\
& \cong f_{*}\left(\mathcal{F} \otimes_{\mathcal{O}_{X}} f^{*} \mathcal{E}\right)
\end{aligned}
$$

Here we have used that \otimes and f^{*} and f_{*} all commute with finite direct sums, that $f^{*} \mathcal{O}_{Y} \cong \mathcal{O}_{X}$ and that $\mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X} \cong \mathcal{F}$. One checks that this is exactly the natural homomorphism $f_{*} \mathcal{F} \otimes_{\mathcal{O}_{Y}} \mathcal{E} \rightarrow f_{*}\left(\mathcal{F} \otimes_{\mathcal{O}_{X}} f^{*} \mathcal{E}\right)$ defined in the course, which is thus an isomorphism.
3. Let $f: X \rightarrow Y$ be a quasicompact, separated morphism of schemes, and suppose \mathcal{F} is a quasi-coherent \mathcal{O}_{X}-module. Show that $f_{} \mathcal{F}$ is a quasi-coherent \mathcal{O}_{Y}-module.
Solution: See Görtz and Wedhorn, Proposition 10.10. Note that it is actually enough to assume that the morphism is quasi-separated. See Görtz and Wedhorn, Proposition 10.27. In particular, the same conclusion holds for $f: X \rightarrow Y$ such that X is noetherian.
4. Let R be a ring. Consider a graded ideal $\mathfrak{a} \subset S:=R\left[X_{0}, \ldots, X_{n}\right]$ and let $X:=$ $\operatorname{Proj} S / \mathfrak{a}$ and let $i: X \hookrightarrow \mathbb{P}_{R}^{n}$ be the associated closed embedding. Show that for any $k \in \mathbb{Z}$ there is a natural isomorphism $i^{*} \mathcal{O}_{\mathbb{P}_{R}^{n}}(k) \cong \mathcal{O}_{X}(k)$.
Solution: Fix some X_{j} and let \bar{X}_{j} denote the image of X_{j} under the canonical projection $S \rightarrow S / \mathfrak{a}$. Then i induces a closed embedding

$$
D_{\bar{X}_{j}} \cong \operatorname{Spec}(S / \mathfrak{a})_{\bar{X}_{j}, 0} \hookrightarrow D_{X_{j}} \cong \operatorname{Spec} S_{X_{j}, 0} .
$$

Now we know that $\mathcal{O}_{\mathbb{P}^{n}}(k)\left(\bar{D}_{X_{j}}\right)=S(k)_{X_{j}, 0}=S_{X_{j}, 0} \cdot X_{j}^{k}$. Since for affine schemes pullback corresponds to tensor product, we obtain

$$
i^{*} \mathcal{O}_{\mathbb{P}^{n}}(k)\left(D_{\bar{X}_{j}}\right)=\left(S_{X_{j}, 0} \cdot X_{j}^{k}\right) \otimes_{S_{X_{j}, 0}}(S / \mathfrak{a})_{\bar{X}_{j}, 0} \cong(S / \mathfrak{a})_{\bar{X}_{j}, 0} \cdot \bar{X}_{j}^{k}
$$

By the same reasoning as before, the left hand side is equal to $\mathcal{O}_{X}(k)\left(D_{\bar{X}_{j}}\right)$. Varying j, we thus obtain a family of natural isomorphisms

$$
\varphi_{j}:\left.\left.i^{*} \mathcal{O}_{\mathbb{P}^{n}}(k)\right|_{D_{\bar{x}_{j}}} \xrightarrow{\sim} \mathcal{O}_{X}(k)\right|_{D_{\bar{x}_{j}}} .
$$

Since the gluing morphisms on the intersection $D_{\bar{X}_{j}} \cap D_{\bar{X}_{\ell}}$ are given by multiplication by $\bar{X}_{\ell}^{k} / \bar{X}_{j}^{k}$, we see that the φ_{j} are compatible with gluing and thus yield the desired isomorphism.
5. For graded modules over a graded ring R : Is the functor $M \mapsto \tilde{M}$ faithful? Full? Does it reflect isomorphisms?
Solution: The answer to all three questions is no.
It is a general fact that if $\alpha: M \rightarrow M^{\prime}$ is a morphism of graded R-modules such that there exists a $d_{0} \in \mathbb{Z}$ with $\alpha_{d}: M_{d} \rightarrow M_{d}^{\prime}$ an isomorphism for all $d \geqslant d_{0}$, then the morphism $\tilde{\alpha}: \tilde{M} \rightarrow \tilde{M}^{\prime}$ induced by α is an isomorphism. To see this, let $f \in R_{+}$ be homogenous. We have $\tilde{N}\left(D_{f}\right) \cong N_{f, 0}$ and $\tilde{M}^{\prime}\left(D_{f}\right) \cong M_{f, 0}^{\prime}$. The morphism α induces a morphism $\alpha_{f, 0}: M_{f, 0} \rightarrow M_{f, 0}^{\prime}$. Suppose $\alpha_{0, f}\left(m / f^{n}\right)=0$. Multiplying the numerator and denominator for some power of f, we may assume that $\operatorname{deg} m \geqslant d_{0}$. We have $\alpha_{f, 0}\left(m / f^{n}\right)=\alpha(m) / f^{n}=0$, which means that $f^{k} \alpha(m)=\alpha\left(f^{k} m\right)=0$ for some $k \in \mathbb{Z}^{\geqslant 0}$. But since $\operatorname{deg} f^{k} m \geqslant d_{0}$, this means that $f^{k} m=0$, so $m / f^{n}=0$ in $M_{f, 0}$. Thus $\alpha_{f, 0}$ is injective. A similar argument shows surjectivity. Since f was arbitrary and $\alpha_{f, 0}$ determines the restriction of $\tilde{\alpha}$ to D_{f}, we find that $\tilde{\alpha}$ is an ismorphism over every member of an open covering, and is thus itself and isomorphism.
Let k be a field, let $R:=k\left[X_{0}, \ldots, X_{n}\right]$ and let $X:=\operatorname{Proj} R$. Consider the graded R-modules $M:=R$ and $M^{\prime}=R_{+}$. Then $M \not \not M^{\prime}$ since their degree 0 parts are not isomorphic. By the preceeding paragraph, the inclusion $M^{\prime} \hookrightarrow M$ induces an isomorphism of the corresponding quasicoherent sheaves. This shows that the functor does not reflect isomorphisms. Moreover, the group of graded homomorphisms $\operatorname{Hom}_{R}\left(M, M^{\prime}\right)=0$ since any such morphism sends M_{0} to 0 . Thus the functor is not full. Now consider the trivially graded R-module $M^{\prime \prime}:=$ $M / M^{\prime} \cong k$. The above argument shows that $\tilde{M}^{\prime \prime}=0$. In particular, we have $\operatorname{Hom}_{\mathcal{O}_{X}}\left(\tilde{M}^{\prime \prime}, \tilde{M}\right)=0$. The inclusion $\iota: k \hookrightarrow M$ yields a non-zero element of $\operatorname{Hom}_{R}\left(M^{\prime \prime}, M\right)$. It follows that the functor is not faithful.
6. Let $i: \mathbb{P}^{n} \times \mathbb{P}^{m} \hookrightarrow \mathbb{P}^{n m+n+m}$ be the Segre embedding. Prove that $i^{*} \mathcal{O}(1) \cong$ $\operatorname{pr}_{1}^{*} \mathcal{O}(1) \otimes \operatorname{pr}_{2}^{*} \mathcal{O}(1)$. What is $i^{*} \mathcal{O}(1)$ for the d-uple embedding $i: \mathbb{P}^{n} \hookrightarrow \mathbb{P}^{N}$?
Solution: Recall that $\mathcal{O}(1)$ on \mathbb{P}^{n} is generated by its global sections X_{0}, \ldots, X_{n}. Likewise $\mathcal{O}(1)$ on \mathbb{P}^{m} is generated by its global sections Y_{0}, \ldots, Y_{m}. Thus the sheaf $\operatorname{pr}_{1}^{*} \mathcal{O}(1) \otimes \operatorname{pr}_{2}^{*} \mathcal{O}(1)$ on $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is generated by the global sections $X_{i} \otimes Y_{j}$ for all i and j. A quick local calculation shows that the associated morphism $i: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow$ $\mathbb{P}^{n m+n+m}$ is precisely the Segre embedding. Thus $i^{*} \mathcal{O}(1) \cong \operatorname{pr}_{1}^{*} \mathcal{O}(1) \otimes \operatorname{pr}_{2}^{*} \mathcal{O}(1)$, and we are done.
Likewise the sheaf $\mathcal{O}(d)$ on \mathbb{P}^{n} is generated by the global sections $X_{0}^{i_{0}} \cdots X_{n}^{i_{n}}$ for all multiindices $\geqslant 0$ with sum d, and the associated morphism $i: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ is the d-uple embedding; hence $i^{*} \mathcal{O}(1) \cong \mathcal{O}(d)$.
Variant: Write $R:=\mathbb{Z}\left[X_{0}, \ldots, X_{n}\right]$ and $S:=\mathbb{Z}\left[Y_{0}, \ldots, Y_{m}\right]$ and $Q:=\mathbb{Z}\left[Z_{00}, \ldots, Z_{n m}\right]$ and recall that the Segre embedding is obtained from the substitution $Z_{i j}=X_{i} Y_{j}$. Thus for any i and j we have $i^{-1}\left(D_{Z_{i j}}\right)=U_{i j}:=D_{X_{i}} \times D_{Y_{j}}$. Since $\left.\mathcal{O}(1)\right|_{D_{X_{i}}}=\mathcal{O} \cdot X_{i}$
and $\left.\mathcal{O}(1)\right|_{D_{Y_{j}}}=\mathcal{O} \cdot Y_{j}$ and $\left.\mathcal{O}(1)\right|_{D_{Z_{i j}}}=\mathcal{O} \cdot Z_{i j}$, we find isomorphisms

$$
\left.\left.\left.\left.i^{*} \mathcal{O}(1)\right|_{U_{i j}} \cong \mathcal{O}\right|_{U_{i j}} \cdot Z_{i j} \cong \mathcal{O}\right|_{U_{i j}} \cdot X_{i} Y_{j} \cong\left(\operatorname{pr}_{1}^{*} \mathcal{O}(1) \otimes \operatorname{pr}_{2}^{*} \mathcal{O}(1)\right)\right|_{U_{i j}}
$$

A quick calculation shows that these are compatible over all intersections $U_{i j} \cap U_{i^{\prime} j^{\prime}}$; hence they glue to an isomorphism $i^{*} \mathcal{O}(1) \cong \operatorname{pr}_{1}^{*} \mathcal{O}(1) \otimes \operatorname{pr}_{2}^{*} \mathcal{O}(1)$.

