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Solutions 4

Invertible Sheaves, Morphisms to Projective Space

1. LetX = ProjR for a graded ringR. Consider the graded ringR′ :=
⊕

d>0OX(d)(X).
Is there a natural isomorphism ProjR′ ∼= X?

Solution: In order to have the invertible sheaf OX(1) we must assume that R is
generated by R1 over R0. We assume further that R is finitely generated over R0.

Lemma. Consider any g ∈ OX(d)(X) ⊂ R′ for some d > 0. Let DX
g be the open

subscheme of X where g generates OX(d). Then:

(a) DX
g is affine.

(b) There is a natural isomorphism R′g,0
∼→ OX(DX

g ).

Proof. Abbreviate U := DX
g .

(a) Let f1, . . . , fn ∈ R1 be generators of R over R0. Then each Vi := DX
fi

is open
affine and X =

⋃
i Vi. Also, for each i we have

DU
fd
i
g

= U ∩ Vi = DVi
g

fd
i

.

The last term is a standard open subset of an affine scheme and hence affine. Thus
U =

⋃
i(U ∩ Vi) =

⋃
iD

U
fdi /g

is a union of open affines. Since these cover U , the

elements fdi /g generate the unit ideal in OU(U). Traveling to the future, we apply
Exercise 5a on Sheet 5 to deduce that U is affine, as desired.

(b) The homomorphism is simply defined via h
gn
7→ h|U

gn|U
. Suppose h

gn
7→ 0. We

have h ∈ OX(dn)(X), and our assumption implies that h|U = 0. By part (a) of a
lemma from §5.7, there exists an m > 0 such that h⊗gm = 0 in OX(d(n+m))(X).
Thus h

gn
= hgm

gn+m = 0 in R′g,0. The morphism is thus injective. A similar application

of part (b) of the same lemma gives surjectivity.

Let X ′ := ProjR′. The lemma yields a natural isomorphism DX
g
∼→ DX′

g . Since
these cover X and X ′ respectively, the isomorphisms glue to an isomorphism
X
∼→ X ′.

2. Let X = ProjR for a graded ring R that is generated by finitely many elements
of R1 over a noetherian ring R0. Prove that a sheaf of OX-modules is coherent if
and only if it is isomorphic to M̃ for a finitely generated graded R-module M .
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Solution:

⇒: Let F be a coherent OX-module and let M :=
⊕

n>0F(n). Then F ∼= M̃ .
Recall that X admits a closed embedding into Pn with OX(1) being the pullback
of OPn(1), and hence OX(1) is very ample. It is thus ample. It follows that there
exists an n such that F(n) is generated by global sections. Since X is noetherian
and F(n) is finitely generated, it is generated by finitely many global sections.
Let M ′ be the graded R-submodule generated by these sections. The inclusion
M ′ ⊂ M induces an inclusion of sheaves M̃ ′ ↪→ M̃ . Twisting by n this yields
isomorphisms M̃ ′(n) ∼= M̃(n) ∼= F(n) since F(n) is generated by global sections
in M ′. Twisting by −n, we find M̃ ′ ∼= F , as desired.

⇐: Let M be a finitely generated graded R-module, and let f0, . . . fn ∈ R1 be
generators of R over R0. For each i, we have M̃(Dfi) = Mfi,0 and one checks that
M being finitely generated implies the same for Mfi,0. Since the Dfi form an affine
open covering and X is noetherian, it follows that M̃ is coherent.

3. Let L and L′ be invertible sheaves on a noetherian scheme X. Show:

(a) If L is ample, there exists an n0 ∈ Z such that L⊗n⊗L′ is very ample for all
n > n0.

(b) If L is ample and there exists an integer n′ > 0 such that L′⊗n′ is generated
by its global sections, then L ⊗ L′ is ample.

(c) If L and L′ are ample, then L ⊗ L′ is ample.

Solution:

(a) In the lecture we proved that some power L⊗m is very ample. In particular, L⊗m
is generated by global sections. By the definition of ampleness applied to F := L′,
there exists an n1 such that for all n > n1 the sheaf L⊗n⊗L′ is generated by global
sections. By a proposition in the lecture the sheaf L⊗m⊗ (L⊗n⊗L′) = L⊗m+n⊗L′
is then very ample. So the desired statement holds with n0 = m+ n1.

(b) See [Görtz and Wedhorn, Proposition 13.50,(3)].

(c) By applying the definition of ample to F := OX , there exists an integer n′ > 0
such that L′⊗n′ is generated by global sections. Apply (b).

4. Let f : X → Y be a finite morphism of noetherian schemes. Let L be an ample
invertible sheaf on Y . Show that f ∗L is ample.

Solution: We give a proof that does not require the noetherian assumption. Let
F be a finitely generated quasi-coherent sheaf on X. Since f is finite and hence
affine, a proposition from the course shows that f∗F is quasicoherent. Recall the
following fact from commutative algebra: Let A be a ring and B an A-algebra,
which is finitely generated as a B-module. If M is a finitely generated B-module,
then M |A is a finitely generated A-module. Since f is finite, one applies this fact
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to deduce that f∗F is also finitely generated. Thus there exists an n0 > 0 such
that f∗F ⊗ L⊗n is generated by global sections for all n > n0. Applying f ∗ we
find that f ∗(f∗F ⊗L⊗n) ∼= f ∗f∗F ⊗ (f ∗L)⊗n is generated by global sections. This

is equivalent to giving a surjective morphism O(I)
X � f ∗f∗F ⊗ (f ∗L)⊗n. Since f

is affine, the adjunction morphism f ∗f∗F → F is surjective. This corresponds to
the fact that the natural morphism M |A⊗A B →M is surjective. Tensoring with

(f ∗L)⊗n is left exact. The composition O(I)
X → f ∗f∗F ⊗ (f ∗L)⊗n → F ⊗ (f ∗L)⊗n

is therefore also surjective. Hence F ⊗ (f ∗L)⊗n is generated by global sections and
f ∗L is ample.

5. Let X be the affine line over a field k with the origin doubled. Calculate PicX,
determine which invertible sheaves are generated by global sections, and then show
that there is no ample invertible sheaf on X.

Solution: We first show that Pic(A1
k) = 0. Let L be an invertible sheaf on A1

k.
In particular, it is coherent and thus L ∼= M̃ , where M is a finitely generated
k[t]-module which is locally free of rank 1. This implies that M is torsion free.
Since k[t] is a principal ideal domain, it follows that M is free of rank 1. Thus L
is trivial, as desired. Alternatively, since k[t] is a Dedekind domain, there is an
isomorphism Pic(A1) ∼= Cl(k[t]). The latter is trivial since k[t] is a factorial ring.

Let U and U ′ be the two copies of A1
k = Spec k[t] in X. To give an invertible

sheaf on X is equivalent to giving invertible sheaves L on U and L′ on U ′ along
with a gluing isomorphism L|U∩U ′

∼→ L′|U∩U ′ . Since Pic(A1
k) = 0, we may assume

L = L′ = OA1
k
. A gluing isomorphism then corresponds to multiplication by an

element of O×X(U ∩ U ′) = k[t, t−1]× = k× · tZ. Fix n ∈ Z and µ, λ ∈ k×. We have
a commutative diagram:

OA1
k
|U∩U ′ ∼

·λtn // OA1
k
|U∩U ′

·λ−1µ

��
OA1

k
|U∩U ′ ∼

·µtn // OA1
k
|U∩U ′ .

Since multiplication by λ−1µ is an automorphism of OA1
k
, it follows that the in-

vertible sheaves obtained from gluing via λtn and µtn are isomorphic. Thus every
invertible sheaf on X is isomorphic to the invertible sheaf Ln obtained by gluing
via multiplication by tn for some n ∈ Z.

Suppose n 6= m ∈ Z. We have Ln(X) ∼= {(f, g) ∈ k[x]2 | tnf = g}. Any isomor-
phism Ln → Lm would induce an isomorphism over U and U ′, which corresponds
to multiplication by a pair (λ, µ) ∈ (k×)2. In particular, on global sections we
would have (f, g) 7→ (λf, µg). This means tnf = g and tmλf = µg. Comparing
degrees, this yields a contradiction.

We thus have a bijection of sets Z → Pic(X), n 7→ [Ln]. It remains to show
that this is a group homomorphism i.e. that Ln ⊗ Lm ∼= Ln+m. Since restriction
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commutes with tensor product, the sheaf Ln⊗Lm is obtained by gluing two copies
of OA1

k
⊗OA1

k

OA1
k

via multiplication by tn ⊗ tm. Contracting the tensor product

yields the desired isomorphism.

Now suppose X admits an ample invertible sheaf L. Since X is noetherian, this
means that some power of L is very ample, so X admits a locally closed embed-
ding into some Pnk . But this would imply that X is separated, a contradiction.
Alternatively, one can show that the global sections of Ln do not generate it when
n 6= 0. This implies that none of the Ln for n 6= 0 are ample, since some power
of a given ample invertible sheaf is always generated by global sections. It also
implies that OX is not ample, since then every finitely generated quasi-coherent
sheaf on X would be generated by global sections.
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