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Prof. Richard Pink

Solutions 5
Projective Morphisms, Invertible Sheaves, Relative Proj

1. Prove that a morphism f : X → Y is projective if and only if it is quasiprojective
and proper.

Solution: “⇒”: That projective implies quasiprojective is clear. By a proposition
of §4.12, projective morphisms are proper.

“⇐”: Let Y =
⋃
i Vi be an open covering such that for each i there is a locally

closed embedding ei : f−1(Vi) ↪→ Pni × Vi. Then proji ◦ei = f |f−1(Vi) is proper and
proji is separated; hence ei is proper by a proposition of §4.12. Thus ei is a closed
embedding; hence f is projective.

2. Let f : X → Y be a quasicompact morphism. Let L and L′ be invertible sheaves
on X that are relatively ample over Y . Show that L⊗L′ is relatively ample over Y .

Solution: For any point x ∈ X take open affine neighborhoods U , U ′ ⊂ X
such that L|f−1(U) and L′|f−1(U ′) are ample. Choose an open affine neighborhood
V ⊂ U ∩ U ′. Once we know that L|f−1(V ) and L′|f−1(V ) are ample, we deduce
L|f−1(V ) ⊗L′|f−1(V )

∼= (L⊗L′)|f−1(V ) is ample by Sheet 4, Exercise 3c. (Parts (b)
and (c) of that exercise do not require the noetherian hypothesis. Quasicompact
and (quasi)separated suffice.) Hence L ⊗ L′ is relatively ample over Y .

By symmetry it remains to show that L|f−1(V ) is ample. For this note that f−1(U)
is quasicompact by assumption. Also, since it possesses an ample invertible sheaf,
by [Görtz and Wedhorn, Remark 13.61(3)] it embeds into Proj

⊕
n>0 f∗L⊗n(U);

hence it is separated. We can then apply the following lemma to Z := f−1(U):

Lemma (Liu, Lemma 5.1.35b). Let Z be separated and quasicompact and let L
be an ample invertible sheaf on Z. If V ⊂ Z is an open quasicompact subscheme,
then L|V is ample.

3. Let S =
⊕

d>0 Sd be a quasi-coherent sheaf of graded OX-algebras. Then for each
open affine U ⊂ X, we have the graded OX(U)-modules S(U) =

⊕
d>0 Sd(U).

(a) Show that there exists a natural scheme π : ProjS → X together with iso-
morphisms ηU : π−1(U)

∼→ ProjS(U) over U for all open affine subschemes
U ⊂ X.

(b) Suppose S is locally generated over S0 by S1. Show that there is a natural
invertible sheaf O(1) on ProjS whose restriction to each π−1(U) corresponds
to the previously known sheaf O(1) on ProjS(U) via ηU . We call ProjS the
relative Proj of S.
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(c) Show that for any projective morphism f : Y → X with relatively very ample
invertible sheaf L on Y there is a natural isomorphism Y ∼= Proj

⊕
d>0 f∗L⊗d.

Solution:

(a) and (b) See https://stacks.math.columbia.edu/tag/01NM. The main thing to
prove is the following: Let S be a Z>0-graded ring and let A := S0. Let B be an
A-algebra. Let SB := S ⊗A B. Then Proj(SB) ∼= ProjS ×SpecA SpecB. Such an
isomorphism is unique by the universal property of the fiber product. Suppose S
is generated by S1 as an A-algebra. Then OProjSB(1) is isomorphic to the pullback
of OProjS(1) under the canonical morphism ProjSB → ProjS. These statements
allow us to construct ProjS and O(1) by glueing.

(c) Let U = SpecA ⊂ X be an open subscheme such that L|f−1(U) is very ample.
Thus L|f−1(U) corresponds to O(1) for an isomorphism f−1(U) ∼= ProjR over U .
By Sheet 4, Exercise 1, we obtain a commutative diagram

f−1(U) ∼ //

∼=
��

Proj
⊕

d>0 L⊗d(f−1(U))

∼=
��

ProjR ∼ // ProjR′,

and thus a natural isomorphism over U

f−1(U) ∼= Proj
⊕
d>0

L⊗d(f−1(U)) = Proj
(⊕
d>0

f∗L⊗d
)

(U).

We vary U and glue these isomorphisms to construct the desired isomorphism.

4. For any integer n > 0 consider the morphism

X := An+1 r {0} π−→ Y := Pn, (x0, . . . , xn) 7→ (x0 : . . . : xn).

Prove that π is affine and determine the sheaf of OX-algebras π∗OX .

Solution: We have a covering of Pn by the standard open affines Dxi . Since
π−1(Dxi) is isomorphic to the standard affine open Dxi ⊂ An+1, if follows from
Exercise 5b that π is affine.

We now determine π∗OX . By Sheet 3, Exercise 3, it is quasicoherent. The restric-
tion π∗OX |Dxi is thus determined by its global sections. Let S := k[x0, . . . , xn].
We have

π∗OX(Dxi) = OX(π−1
(
Dxi)

)
= Sxi =

⊕
d∈Z

Sxi,0 · xdi =
⊕
d∈Z

OPn(d)(Dxi).

By gluing it follows that π∗OX =
⊕

d∈ZOPn(d).
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5. (a) Prove that a scheme X is affine if and only if there exist sections s1, . . . , sn ∈
OX(X) generating the unit ideal such that for each i the open subset Dsi =
X r V (si) is affine.

(b) Prove that for any morphism f : X → Y , the following are equivalent:

i. There exists an affine open covering Y =
⋃
Vi such that each f−1(Vi) is

affine.

ii. For every open affine V ⊂ Y the inverse image f−1(V ) is affine.

Solution:

Proof of (a): “⇒”: Take s = 1 ∈ OX(X). “⇐”: Let A := OX(X). Let
ϕ : X → SpecA be the natural structure morphism. For each i, this restricts
to the morphism ϕi : Dsi → SpecAsi of affine schemes determined by the homo-
morphism

ϕ[i : Asi → OX(Dsi),
f

sni
7→

f |Dsi
sni |Dsi

.

Just as in the solution to Sheet 4, Exercise 1, we use parts (a) and (b) of the
lemma in §5.7 to show that ϕ[i, and hence ϕi, is an isomorphism. Since the Dsi

and SpecAsi cover X and SpecA respectively, it follows that ϕ is an isomorphism
and X is affine.

We note that the lemma requires that X be quasicompact and separated. But X
is a finite union of quasicompact open subschemes and hence quasicompact. The
fact that X is separated follows from the fact that separatedness is local on the
target and that the ϕi are morphisms of affine schemes, hence separated.

Proof of (b): (ii)⇒ (i) is clear. For (i)⇒ (ii), cover each V ∩Vi by open affines Vij
which are standard open in both V and Vi. Then each f−1(Vij) is affine. If Vij is
the standard open of V associated to sij ∈ OV (V ), then f−1(Vij) is the standard
open of f−1(V ) associated to f ∗sij, in the sense of §5.7. Now apply (a).

*6. (Vector bundles versus locally free sheaves)

A vector bundle of rank n ∈ Z>0 over X is a morphism f : V → X together with
morphisms +: V ×X V → V and · : A1×V → V and 0: X → V over X, such that
there exists an open covering X =

⋃
α Uα and isomorphisms f−1(Uα) ∼= An × Uα

over Uα, such that the morphisms +, ·, 0 correspond to the morphisms

An × An × Uα → An × Uα, ((x1, . . . , xn), (y1, . . . , yn), u) 7→ ((x1 + y1, . . . , xn + yn), u)

A1 × An × Uα → An × Uα, (λ, (x1, . . . , xn), u) 7→ ((λx1, . . . , λxn), u)

Uα → An × Uα, u 7→ ((0, . . . , 0), u)

Homomorphisms of vector bundles are morphisms of schemes over X which make
certain commutative diagrams with the morphisms +, ·, 0 that one can guess. A
vector bundle of rank 1 is called a line bundle.
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(a) Look up the definition of vector bundles on a differentiable manifold and
compare.

(b) Write down the commutative diagrams for morphisms of vector bundles.

(c) Why do the above conditions not include analogues of the usual vector space
axioms? What would these analogues say?

(d) For any vector bundle V define the sheaf of sections V as a sheaf of OX-
modules and extend this to a functor.

(e) Prove that this induces an equivalence from the category of vector bundles
of all ranks to the full subcategory of quasi-coherent sheaves on X that are
locally free of some rank.

(f) Discuss what is wrong with [Görtz and Wedhorn, Definition 11.5]. Construct
a concrete example to show that (e) does not hold with that definition.

(g) Promise to never confuse vector bundles with locally free sheaves, or line
bundles with invertible sheaves, even if many other people do.

Solution:

(a) See for example [Lee, John M. Introduction to Smooth Manifolds, Springer
2003.]

(b) A morphism of vector bundles V → V ′ over X is a morphism ϕ : V → V ′ of
schemes over X which is compatible with +, ·, 0, namely, such that the following
three diagrams commute:

V ×X V
+ //

ϕ×ϕ
��

V

ϕ

��
V ′ ×X V ′

+ // V ′

A1 × V · //

id×ϕ
��

V

ϕ

��
A1 × V ′ · // V ′

X
0 //

0

  

V

ϕ
��
V ′

(c) As a typical example we discuss the axiom for associativity. On the standard
affine space An it states that the following diagram commutes:

An × An × An

id×+
��

+×id // An × An

+
��

An × An + // An.

For the vector bundle V := An ×X this translates into the commutative diagram

V ×X V ×X V
id×+

��

+×id // V ×X V
+
��

V ×X V
+ // V.
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But this diagram is well-defined for an arbitrary vector bundle, and it commutes
because it commutes after pullback to an open covering of X.

(d) For each open U ⊂ X, we define V(U) := HomX(U, V ), the set of morphisms
s : U → V such that f ◦ s is the inclusion U ↪→ X. With the restriction of
morphisms this constitutes a sheaf of sets on X. The morphisms +, ·, 0 turn V(U)
into an OX(U)-module whenever U ⊂ Uα for some α. Being a sheaf, it becomes a
sheaf of OX-modules.

Any morphism of vector bundles ϕ : V ′ → V over X determines maps V ′(U) →
V(U), s 7→ ϕ ◦ s and hence a morphism of sheaves V ′ → V . The commutative
diagrams in (b) imply that this is a homomorphism of OX-modules. It clearly
sends the identity to the identity and is compatible with composition; so it defines
a functor from the category of vector bundles over X to the category of OX-
modules.

(e) The isomorphisms f−1(Uα) ∼= An×Uα show that V is locally free of finite rank
since

HomU(Uα,An
U) = OU(U)n.

Hence the functor V 7→ V lands in the correct category.

We define a functor in the opposite direction as follows. First one defines the
notion of the relative Spec of a quasicoherent sheaf of OX-algebras in analogy
with the relative Proj from Exercise 3. One shows that if E is a locally free sheaf
of finite rank on X, then E := Spec

(
Sym(E∨)

)
is a vector bundle and that E 7→ E

is a functor. This is all discussed in Görtz and Wedhorn §11.4, which still applies
despite the flaw in their definition.

Aliter: Take a locally free sheaf E of rank n on X. Choose an open covering
X =

⋃
α Uα and isomorphisms E|Uα

∼→ O⊕nUα for all α. Then for any α, β the two
isomorphisms over Uα ∩ Uβ differ by an element of GLn(OX(Uα)). Use these to
glue the “constant” vector bundles An × Uα to a vector bundle V over X.

(f) The problem is that the isomorphisms ci : V |Ui → An
U i are not fixed as part of

the data of a vector bundle. We can therefore modify them by arbitrary scheme
automorphisms of An

Ui
over Ui. For instance by translation with a section Ui →

An
U i ; thus V does not come with a given zero section; and this alone prevents one

to turn its sheaf of sections functorially into a sheaf of abelian groups. Also An
Ui

can have automorphisms over Ui which are not linear, such as (x, y) 7→ (x, y+x42).
Thus even if one were given the zero section, one would still not have a natural
addition law on V . Furthermore, even if one were given the zero section and
the addition law, this might not determine the scalar multiplication, because in
characteristic p > 0 the automorphism (x, y) 7→ (x, y+xp) is a group isomorphism
but does not commute with scalar multiplication. (Compare the definition of
differentiable manifolds, where a differentiable atlas is part of the structure.)

(g) I solemnly swear to never confuse vector bundles with locally free sheaves.
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