D-MATH Prof. Richard Pink

Solutions 5

PROJECTIVE MORPHISMS, INVERTIBLE SHEAVES, RELATIVE Proj

1. Prove that a morphism $f: X \to Y$ is projective if and only if it is quasiprojective and proper.

Solution: " \Rightarrow ": That projective implies quasiprojective is clear. By a proposition of §4.12, projective morphisms are proper.

" \Leftarrow ": Let $Y = \bigcup_i V_i$ be an open covering such that for each i there is a locally closed embedding $e_i : f^{-1}(V_i) \hookrightarrow \mathbb{P}^{n_i} \times V_i$. Then $\operatorname{proj}_i \circ e_i = f|_{f^{-1}(V_i)}$ is proper and proj_i is separated; hence e_i is proper by a proposition of §4.12. Thus e_i is a closed embedding; hence f is projective.

2. Let $f: X \to Y$ be a quasicompact morphism. Let \mathcal{L} and \mathcal{L}' be invertible sheaves on X that are relatively ample over Y. Show that $\mathcal{L} \otimes \mathcal{L}'$ is relatively ample over Y.

Solution: For any point $x \in X$ take open affine neighborhoods $U, U' \subset X$ such that $\mathcal{L}|_{f^{-1}(U)}$ and $\mathcal{L}'|_{f^{-1}(U')}$ are ample. Choose an open affine neighborhood $V \subset U \cap U'$. Once we know that $\mathcal{L}|_{f^{-1}(V)}$ and $\mathcal{L}'|_{f^{-1}(V)}$ are ample, we deduce $\mathcal{L}|_{f^{-1}(V)} \otimes \mathcal{L}'|_{f^{-1}(V)} \cong (\mathcal{L} \otimes \mathcal{L}')|_{f^{-1}(V)}$ is ample by Sheet 4, Exercise 3c. (Parts (b) and (c) of that exercise do not require the noetherian hypothesis. Quasicompact and (quasi)separated suffice.) Hence $\mathcal{L} \otimes \mathcal{L}'$ is relatively ample over Y.

By symmetry it remains to show that $\mathcal{L}|_{f^{-1}(V)}$ is ample. For this note that $f^{-1}(U)$ is quasicompact by assumption. Also, since it possesses an ample invertible sheaf, by [Görtz and Wedhorn, Remark 13.61(3)] it embeds into $\operatorname{Proj} \bigoplus_{n \ge 0} f_* \mathcal{L}^{\otimes n}(U)$; hence it is separated. We can then apply the following lemma to $Z := f^{-1}(U)$:

Lemma (Liu, Lemma 5.1.35b). Let Z be separated and quasicompact and let \mathcal{L} be an ample invertible sheaf on Z. If $V \subset Z$ is an open quasicompact subscheme, then $\mathcal{L}|_V$ is ample.

- 3. Let $S = \bigoplus_{d \ge 0} S_d$ be a quasi-coherent sheaf of graded \mathcal{O}_X -algebras. Then for each open affine $U \subset X$, we have the graded $\mathcal{O}_X(U)$ -modules $S(U) = \bigoplus_{d \ge 0} S_d(U)$.
 - (a) Show that there exists a natural scheme π : Proj $\mathcal{S} \to X$ together with isomorphisms $\eta_U \colon \pi^{-1}(U) \xrightarrow{\sim} \operatorname{Proj} \mathcal{S}(U)$ over U for all open affine subschemes $U \subset X$.
 - (b) Suppose \mathcal{S} is locally generated over \mathcal{S}_0 by \mathcal{S}_1 . Show that there is a natural invertible sheaf $\mathcal{O}(1)$ on Proj \mathcal{S} whose restriction to each $\pi^{-1}(U)$ corresponds to the previously known sheaf $\mathcal{O}(1)$ on Proj $\mathcal{S}(U)$ via η_U . We call Proj \mathcal{S} the relative Proj of \mathcal{S} .

(c) Show that for any projective morphism $f: Y \to X$ with relatively very ample invertible sheaf \mathcal{L} on Y there is a natural isomorphism $Y \cong \operatorname{Proj} \bigoplus_{d \ge 0} f_* \mathcal{L}^{\otimes d}$.

Solution:

(a) and (b) See https://stacks.math.columbia.edu/tag/01NM. The main thing to prove is the following: Let S be a $\mathbb{Z}^{\geq 0}$ -graded ring and let $A := S_0$. Let B be an A-algebra. Let $S_B := S \otimes_A B$. Then $\operatorname{Proj}(S_B) \cong \operatorname{Proj} S \times_{\operatorname{Spec} A} \operatorname{Spec} B$. Such an isomorphism is unique by the universal property of the fiber product. Suppose Sis generated by S_1 as an A-algebra. Then $\mathcal{O}_{\operatorname{Proj} S_B}(1)$ is isomorphic to the pullback of $\mathcal{O}_{\operatorname{Proj} S}(1)$ under the canonical morphism $\operatorname{Proj} S_B \to \operatorname{Proj} S$. These statements allow us to construct $\operatorname{Proj} S$ and $\mathcal{O}(1)$ by glueing.

(c) Let $U = \operatorname{Spec} A \subset X$ be an open subscheme such that $\mathcal{L}|_{f^{-1}(U)}$ is very ample. Thus $\mathcal{L}|_{f^{-1}(U)}$ corresponds to $\mathcal{O}(1)$ for an isomorphism $f^{-1}(U) \cong \operatorname{Proj} R$ over U. By Sheet 4, Exercise 1, we obtain a commutative diagram

$$f^{-1}(U) \xrightarrow{\sim} \operatorname{Proj} \bigoplus_{d \ge 0} \mathcal{L}^{\otimes d}(f^{-1}(U))$$
$$\cong \bigvee_{\substack{\cong \\ \operatorname{Proj} R \xrightarrow{\sim} \operatorname{Proj} R',}} \operatorname{Proj} R',$$

and thus a natural isomorphism over U

$$f^{-1}(U) \cong \operatorname{Proj} \bigoplus_{d \ge 0} \mathcal{L}^{\otimes d}(f^{-1}(U)) = \operatorname{Proj} \left(\bigoplus_{d \ge 0} f_* \mathcal{L}^{\otimes d} \right)(U)$$

We vary U and glue these isomorphisms to construct the desired isomorphism.

4. For any integer $n \ge 0$ consider the morphism

$$X := \mathbb{A}^{n+1} \smallsetminus \{0\} \xrightarrow{\pi} Y := \mathbb{P}^n, \ (x_0, \dots, x_n) \mapsto (x_0 : \dots : x_n).$$

Prove that π is affine and determine the sheaf of \mathcal{O}_X -algebras $\pi_*\mathcal{O}_X$.

Solution: We have a covering of \mathbb{P}^n by the standard open affines \overline{D}_{x_i} . Since $\pi^{-1}(\overline{D}_{x_i})$ is isomorphic to the standard affine open $D_{x_i} \subset \mathbb{A}^{n+1}$, if follows from Exercise 5b that π is affine.

We now determine $\pi_*\mathcal{O}_X$. By Sheet 3, Exercise 3, it is quasicoherent. The restriction $\pi_*\mathcal{O}_X|_{\overline{D}_{xi}}$ is thus determined by its global sections. Let $S := k[x_0, \ldots, x_n]$. We have

$$\pi_*\mathcal{O}_X(\overline{D}_{x_i}) = \mathcal{O}_X(\pi^{-1}(\overline{D}_{x_i})) = S_{x_i} = \bigoplus_{d \in \mathbb{Z}} S_{x_i,0} \cdot x_i^d = \bigoplus_{d \in \mathbb{Z}} \mathcal{O}_{\mathbb{P}^n}(d)(\overline{D}_{x_i}).$$

By gluing it follows that $\pi_*\mathcal{O}_X = \bigoplus_{d \in \mathbb{Z}} \mathcal{O}_{\mathbb{P}^n}(d)$.

- 5. (a) Prove that a scheme X is affine if and only if there exist sections $s_1, \ldots, s_n \in \mathcal{O}_X(X)$ generating the unit ideal such that for each *i* the open subset $D_{s_i} = X \setminus V(s_i)$ is affine.
 - (b) Prove that for any morphism $f: X \to Y$, the following are equivalent:
 - i. There exists an affine open covering $Y = \bigcup V_i$ such that each $f^{-1}(V_i)$ is affine.
 - ii. For every open affine $V \subset Y$ the inverse image $f^{-1}(V)$ is affine.

Solution:

Proof of (a): " \Rightarrow ": Take $s = 1 \in \mathcal{O}_X(X)$. " \Leftarrow ": Let $A := \mathcal{O}_X(X)$. Let $\varphi: X \to \operatorname{Spec} A$ be the natural structure morphism. For each *i*, this restricts to the morphism $\varphi_i: D_{s_i} \to \operatorname{Spec} A_{s_i}$ of affine schemes determined by the homomorphism

$$\varphi_i^{\flat} \colon A_{s_i} \to \mathcal{O}_X(D_{s_i}), \ \frac{f}{s_i^n} \mapsto \frac{f|_{D_{s_i}}}{s_i^n|_{D_{s_i}}}$$

Just as in the solution to Sheet 4, Exercise 1, we use parts (a) and (b) of the lemma in §5.7 to show that φ_i^{\flat} , and hence φ_i , is an isomorphism. Since the D_{s_i} and Spec A_{s_i} cover X and Spec A respectively, it follows that φ is an isomorphism and X is affine.

We note that the lemma requires that X be quasicompact and separated. But X is a finite union of quasicompact open subschemes and hence quasicompact. The fact that X is separated follows from the fact that separatedness is local on the target and that the φ_i are morphisms of affine schemes, hence separated.

Proof of (b): (ii) \Rightarrow (i) is clear. For (i) \Rightarrow (ii), cover each $V \cap V_i$ by open affines V_{ij} which are standard open in both V and V_i . Then each $f^{-1}(V_{ij})$ is affine. If V_{ij} is the standard open of V associated to $s_{ij} \in \mathcal{O}_V(V)$, then $f^{-1}(V_{ij})$ is the standard open of $f^{-1}(V)$ associated to f^*s_{ij} , in the sense of §5.7. Now apply (a).

*6. (Vector bundles versus locally free sheaves)

A vector bundle of rank $n \in \mathbb{Z}^{\geq 0}$ over X is a morphism $f: V \to X$ together with morphisms $+: V \times_X V \to V$ and $\cdot: \mathbb{A}^1 \times V \to V$ and $0: X \to V$ over X, such that there exists an open covering $X = \bigcup_{\alpha} U_{\alpha}$ and isomorphisms $f^{-1}(U_{\alpha}) \cong \mathbb{A}^n \times U_{\alpha}$ over U_{α} , such that the morphisms $+, \cdot, 0$ correspond to the morphisms

$$\begin{aligned}
\mathbb{A}^n \times \mathbb{A}^n \times U_\alpha &\to \mathbb{A}^n \times U_\alpha, \quad ((x_1, \dots, x_n), (y_1, \dots, y_n), u) &\mapsto ((x_1 + y_1, \dots, x_n + y_n), u) \\
\mathbb{A}^1 \times \mathbb{A}^n \times U_\alpha &\to \mathbb{A}^n \times U_\alpha, \quad (\lambda, (x_1, \dots, x_n), u) &\mapsto ((\lambda x_1, \dots, \lambda x_n), u) \\
U_\alpha &\to \mathbb{A}^n \times U_\alpha, \quad u \mapsto ((0, \dots, 0), u)
\end{aligned}$$

Homomorphisms of vector bundles are morphisms of schemes over X which make certain commutative diagrams with the morphisms $+, \cdot, 0$ that one can guess. A vector bundle of rank 1 is called a *line bundle*.

- (a) Look up the definition of vector bundles on a differentiable manifold and compare.
- (b) Write down the commutative diagrams for morphisms of vector bundles.
- (c) Why do the above conditions not include analogues of the usual vector space axioms? What would these analogues say?
- (d) For any vector bundle V define the sheaf of sections \mathcal{V} as a sheaf of \mathcal{O}_X -modules and extend this to a functor.
- (e) Prove that this induces an equivalence from the category of vector bundles of all ranks to the full subcategory of quasi-coherent sheaves on X that are locally free of some rank.
- (f) Discuss what is wrong with [Görtz and Wedhorn, Definition 11.5]. Construct a concrete example to show that (e) does not hold with that definition.
- (g) Promise to never confuse vector bundles with locally free sheaves, or line bundles with invertible sheaves, even if many other people do.

Solution:

(a) See for example [Lee, John M. Introduction to Smooth Manifolds, Springer 2003.]

(b) A morphism of vector bundles $V \to V'$ over X is a morphism $\varphi \colon V \to V'$ of schemes over X which is compatible with $+, \cdot, 0$, namely, such that the following three diagrams commute:

(c) As a typical example we discuss the axiom for associativity. On the standard affine space \mathbb{A}^n it states that the following diagram commutes:

$$\begin{array}{c} \mathbb{A}^{n} \times \mathbb{A}^{n} \times \mathbb{A}^{n} \xrightarrow{+\times \mathrm{id}} \mathbb{A}^{n} \times \mathbb{A}^{n} \\ \stackrel{\mathrm{id} \times +}{\downarrow} & + \downarrow \\ \mathbb{A}^{n} \times \mathbb{A}^{n} \xrightarrow{+} \mathbb{A}^{n}. \end{array}$$

For the vector bundle $V := \mathbb{A}^n \times X$ this translates into the commutative diagram

$$V \times_X V \times_X V \xrightarrow{+\times \mathrm{id}} V \times_X V$$
$$\downarrow^{\mathrm{id}\times +} \downarrow \qquad + \downarrow$$
$$V \times_X V \xrightarrow{+} V.$$

But this diagram is well-defined for an arbitrary vector bundle, and it commutes because it commutes after pullback to an open covering of X.

(d) For each open $U \subset X$, we define $\mathcal{V}(U) := \operatorname{Hom}_X(U, V)$, the set of morphisms $s: U \to V$ such that $f \circ s$ is the inclusion $U \hookrightarrow X$. With the restriction of morphisms this constitutes a sheaf of sets on X. The morphisms $+, \cdot, 0$ turn $\mathcal{V}(U)$ into an $\mathcal{O}_X(U)$ -module whenever $U \subset U_\alpha$ for some α . Being a sheaf, it becomes a sheaf of \mathcal{O}_X -modules.

Any morphism of vector bundles $\varphi: V' \to V$ over X determines maps $\mathcal{V}'(U) \to \mathcal{V}(U)$, $s \mapsto \varphi \circ s$ and hence a morphism of sheaves $\mathcal{V}' \to \mathcal{V}$. The commutative diagrams in (b) imply that this is a homomorphism of \mathcal{O}_X -modules. It clearly sends the identity to the identity and is compatible with composition; so it defines a functor from the category of vector bundles over X to the category of \mathcal{O}_X -modules.

(e) The isomorphisms $f^{-1}(U_{\alpha}) \cong \mathbb{A}^n \times U_{\alpha}$ show that \mathcal{V} is locally free of finite rank since

$$\operatorname{Hom}_U(U_\alpha, \mathbb{A}^n_U) = \mathcal{O}_U(U)^n.$$

Hence the functor $V \mapsto \mathcal{V}$ lands in the correct category.

We define a functor in the opposite direction as follows. First one defines the notion of the *relative* Spec of a quasicoherent sheaf of \mathcal{O}_X -algebras in analogy with the relative Proj from Exercise 3. One shows that if \mathcal{E} is a locally free sheaf of finite rank on X, then $E := \text{Spec} (\text{Sym}(\mathcal{E}^{\vee}))$ is a vector bundle and that $\mathcal{E} \mapsto E$ is a functor. This is all discussed in Görtz and Wedhorn §11.4, which still applies despite the flaw in their definition.

Aliter: Take a locally free sheaf \mathcal{E} of rank n on X. Choose an open covering $X = \bigcup_{\alpha} U_{\alpha}$ and isomorphisms $\mathcal{E}|_{U_{\alpha}} \xrightarrow{\sim} \mathcal{O}_{U_{\alpha}}^{\oplus n}$ for all α . Then for any α, β the two isomorphisms over $U_{\alpha} \cap U_{\beta}$ differ by an element of $\operatorname{GL}_n(\mathcal{O}_X(U_{\alpha}))$. Use these to glue the "constant" vector bundles $\mathbb{A}^n \times U_{\alpha}$ to a vector bundle V over X.

(f) The problem is that the isomorphisms $c_i \colon V|_{U_i} \to \mathbb{A}_{U^i}^n$ are not fixed as part of the data of a vector bundle. We can therefore modify them by arbitrary scheme automorphisms of $\mathbb{A}_{U_i}^n$ over U_i . For instance by translation with a section $U_i \to \mathbb{A}_{U^i}^n$; thus V does not come with a given zero section; and this alone prevents one to turn its sheaf of sections functorially into a sheaf of abelian groups. Also $\mathbb{A}_{U_i}^n$ can have automorphisms over U_i which are not linear, such as $(x, y) \mapsto (x, y + x^{42})$. Thus even if one were given the zero section, one would still not have a natural addition law on V. Furthermore, even if one were given the zero section and the addition law, this might not determine the scalar multiplication, because in characteristic p > 0 the automorphism $(x, y) \mapsto (x, y + x^p)$ is a group isomorphism but does not commute with scalar multiplication. (Compare the definition of differentiable manifolds, where a differentiable atlas is part of the structure.)

(g) I solemnly swear to never confuse vector bundles with locally free sheaves.