Solutions 6

Picard Group, Divisors, Divisor Classes

Let k be a field.

1. Prove that $\operatorname{Aut}_{k}\left(\mathbb{P}_{k}^{n}\right)$ is naturally isomorphic to $\mathrm{PGL}_{n+1}(k)$.

Solution: See Hartshorne, Example II.7.1.1.
2. Consider a morphism $\varphi: \mathbb{P}_{k}^{n} \rightarrow \mathbb{P}_{k}^{m}$ over k which does not factor through a k-valued point of \mathbb{P}_{k}^{m}. Show that $n \leqslant m$ and that φ is the composite of the d-uple embedding $\mathbb{P}_{k}^{n} \rightarrow \mathbb{P}_{k}^{N}$ for a uniquely determined $d \geqslant 1$ and a morphism $\mathbb{P}_{k}^{N}-L \rightarrow \mathbb{P}_{k}^{m}$ induced by linear polynomials $\ell_{0}, \ldots, \ell_{m}$, where L is a linear subspace of \mathbb{P}_{k}^{N}. Deduce that φ has finite fibers and that $\operatorname{dim} \varphi\left(\mathbb{P}_{k}^{n}\right)=n$.
Solution: Giving a morphism $\mathbb{P}_{k}^{n} \rightarrow \mathbb{P}_{k}^{m}$ over k corresponds to giving an invertible sheaf \mathcal{L} on \mathbb{P}_{k}^{n} along with global sections f_{0}, \ldots, f_{m} generating it. Since $\operatorname{Pic}\left(\mathbb{P}_{k}^{n}\right)$ is generated by the class of $\mathcal{O}(1)$, we can without loss of generality assume that $\mathcal{L}=\mathcal{O}(d)$ for some integer d. This d is unique except if $n=0$, but in that case $\mathbb{P}_{k}^{n} \cong \operatorname{Spec} k$, so the morphism factors through a k-valued point, which was ruled out by assumption. Then f_{0}, \ldots, f_{m} are homogenous polynomials of degree d which are not all 0 ; hence $d \geqslant 0$. If $d=0$, the f_{i} are constant and φ factors through the closed point $\left(f_{0}: \ldots: f_{m}\right) \in \mathbb{P}^{m}(k)$, which was ruled out by assumption. Thus $d \geqslant 1$. Since the f_{i} generate the invertible sheaf $\mathcal{O}(d)$, their joint zero locus $Y:=V\left(f_{0}, \ldots, f_{m}\right)$ must be empty. As $\operatorname{dim} Y \geqslant n-(m+1)$, it follows that $n \leqslant m$. Now recall that the d-uple embedding $\nu_{d}: \mathbb{P}_{k}^{n} \rightarrow \mathbb{P}_{k}^{N}$ is given by the same invertible sheaf $\mathcal{O}(d)$ on \mathbb{P}_{k}^{n} but with all monomials of degree d as sections. Since each f_{i} is a linear combination of such monomials, there are linear forms $\ell_{0}, \ldots, \ell_{m}$ on \mathbb{P}_{k}^{N} such that $\nu_{d}^{*} \ell_{i}=f_{i}$ for all i. Let $L:=V\left(\ell_{0}, \ldots, \ell_{m}\right) \subset \mathbb{P}_{k}^{N}$. The ℓ_{i} generate $\mathcal{O}_{\mathbb{P}_{k}^{N}}(1)$ over $\mathbb{P}_{k}^{N} \backslash L$ and define a linear projection $p: \mathbb{P}_{k}^{N} \backslash L \rightarrow \mathbb{P}_{k}^{m}$ such that $p^{*} X_{i}=\ell_{i}$ for each $i=0, \ldots, m$. Since $\nu_{d}^{-1}(L)=Y=\varnothing$, it follows that ν_{d} factors through $\mathbb{P}_{k}^{N} \backslash L$. We have $\left(p \circ \nu_{d}\right)^{*} X_{i}=f_{i}$ for all i, and thus $\varphi=p \circ \nu_{d}$.
To show that φ has finite fibers, it is sufficient to show that $p \circ \iota$, where $\iota: \nu_{d}\left(\mathbb{P}_{k}^{n}\right) \hookrightarrow$ \mathbb{P}_{k}^{N} is the canonical embedding, has finite fibers. Let $x \in \mathbb{P}_{k}^{m}$. Then $x \in D_{X_{i}}^{\mathbb{P}_{i}^{m}}$ for some i and $p^{-1}\left(D_{X_{i}}^{\mathbb{P}_{k}^{m}}\right)=D_{\ell_{i}}^{\mathbb{P}_{k}^{N}}$, which is affine. It follows that

$$
(p \circ \iota)^{-1}(x)=p^{-1}(x) \cap \nu_{d}\left(\mathbb{P}_{k}^{n}\right) \subset D_{\ell_{i}}^{\mathbb{P}_{k}^{N}}
$$

is affine. But it is also closed in the projective variety $\nu_{d}\left(\mathbb{P}_{k}^{n}\right)$ and hence projective. It follows that $(p \circ \iota)^{-1}(x)$ is finite, as desired. Finally, we conclude that
$\operatorname{dim} \varphi\left(\mathbb{P}_{k}^{n}\right)=n$ by noting that $\operatorname{dim} \mathbb{P}_{k}^{n}-\operatorname{dim} \varphi\left(\mathbb{P}_{k}^{n}\right)$ is bounded above by the dimension of any non-empty fiber of φ [Hartshorne, Exercise II.3.22], which we have just shown is equal to 0 .
3. Consider the nodal cubic curve $X:=V\left(C(C-B) A-B^{3}\right) \subset \mathbb{P}_{k}^{2}$. Prove that $\operatorname{Pic}(X) \cong k^{\times} \times \mathbb{Z}$.
(Hint: Recall that X has the normalization $\pi: \mathbb{P}_{k}^{1} \rightarrow X$. To describe an invertible sheaf \mathcal{L} on X, describe $\pi^{*} \mathcal{L}$ and find out which additional information is necessary to determine \mathcal{L}.)
Solution: In $\S 5.8$ we constructed $\pi: \tilde{X}:=\mathbb{P}_{k}^{1} \rightarrow X$ such that the inverse image of the singular point P_{0} with coordinates $(A: B: C)=(1: 0: 0)$ is the reduced closed subscheme $\{0,1\} \subset \tilde{X}$ and that π induces an isomorphism $\tilde{X} \backslash\{0,1\} \xrightarrow{\sim} X \backslash\left\{P_{0}\right\}$. We also constructed affine charts which show that

$$
\begin{equation*}
\mathcal{O}_{X} \cong\left\{f \in \pi_{*} \mathcal{O}_{\tilde{X}} \mid f(1)=f(0)\right\} \tag{3.1}
\end{equation*}
$$

Now observe that for any invertible sheaf \mathcal{L} on X, the pullback $\pi^{*} \mathcal{L}$ is an invertible sheaf on \tilde{X} and π induces isomorphisms of 1-dimensional k-vector spaces

$$
\begin{equation*}
\left(\pi^{*} \mathcal{L}\right)_{0} \otimes_{\mathcal{O}_{\tilde{X}, 0}} k \stackrel{\sim}{\sim} \mathcal{L}_{P_{0}} \otimes_{\mathcal{O}_{X, P_{0}}} k \xrightarrow{\sim}\left(\pi^{*} \mathcal{L}\right)_{1} \otimes_{\mathcal{O}_{\tilde{X}, 0}} k . \tag{3.2}
\end{equation*}
$$

Since $\operatorname{Pic}\left(\mathbb{P}_{k}^{1}\right) \cong \mathbb{Z}$ with generator $\mathcal{O}(1) \cong \mathcal{O}_{\tilde{X}}(\infty)$, we can choose an isomorphism $u: \pi^{*} \mathcal{L} \xrightarrow{\sim} \mathcal{O}_{\tilde{X}}(d \cdot \infty)$ for a unique integer d. Then the composite isomorphism in (3.2) amounts to an isomorphism

$$
\begin{equation*}
k=\mathcal{O}_{\tilde{X}, 0} \otimes_{\mathcal{O}_{\tilde{X}, 0}} k=\mathcal{O}_{\tilde{X}}(d \cdot \infty)_{0} \otimes_{\mathcal{O}_{\tilde{X}, 0}} k \xrightarrow{\sim} \mathcal{O}_{\tilde{X}}(d \cdot \infty)_{1} \otimes_{\mathcal{O}_{\tilde{X}, 0}} k=k . \tag{3.3}
\end{equation*}
$$

This is multiplication by an element $\lambda \in k^{\times}$. Note that u is unique up to an automorphism of $\mathcal{O}_{\tilde{X}}(d \cdot \infty)$, and any automorphism of an invertible sheaf is multiplication by a nowhere vanishing section of the structure sheaf. In this case u is therefore unique up to a scalar $\Gamma\left(\tilde{X}, \mathcal{O}_{\tilde{X}}^{\times}\right)=k^{\times}$. Since this scalar appears equally on both sides of (3.2), the scalar λ is independent of the choice of u. A similar calculation shows that λ depends only on the isomorphism class of \mathcal{L}. Together this therefore defines a map $\operatorname{Pic}(X) \rightarrow k^{\times} \times \mathbb{Z},[\mathcal{L}] \mapsto(\lambda, d)$. As the construction is compatible with tensor product, this map is a homomorphism.
If $[\mathcal{L}]$ lies in the kernel, we have $d=0$ and $\lambda=1$. Then $\pi^{*} \mathcal{L} \cong \mathcal{O}_{\tilde{X}}$ and (3.1) shows that $\mathcal{L} \cong \mathcal{O}_{X}$. Thus the homomorphism is injective. For arbitrary $(\lambda, d) \in k^{\times} \times \mathbb{Z}$ set

$$
\begin{equation*}
\mathcal{L}:=\left\{f \in \pi_{*} \mathcal{O}_{\tilde{X}}(d \cdot \infty) \mid f(1)=\lambda \cdot f(0)\right\} . \tag{3.4}
\end{equation*}
$$

Using (3.1) and a quick local calculation one finds that this is an invertible sheaf on X which gives back the pair (λ, d). Thus the homomorphism is surjective, and hence an isomorphism, as desired.

Aliter: Follow Hartshorne Example II.6.11.4 and Exercises II.6.7 and II.6.9.
*4. Determine the Picard group of the cuspidal cubic curve $V\left(Y^{2} Z-X^{3}\right) \subset \mathbb{P}_{k}^{2}$.
Solution: Here again the normalization of $X:=V\left(Y^{2} Z-X^{3}\right)$ is isomorphic to \mathbb{P}_{k}^{1}, but the inverse image of the unique singular point $P_{0}=(0: 0: 1)$ is a k-valued point with multiplicity 2. Follow Hartshorne Exercise II.6.9.
5. (a) For any noetherian integral scheme X and any irreducible closed subscheme $Y \subset X$ of codimension 1, construct a natural exact sequence $\mathbb{Z} \rightarrow \mathrm{Cl}(X) \rightarrow$ $\mathrm{Cl}(X \backslash Y) \rightarrow 0$.
(b) Prove that $\mathrm{Cl}\left(\mathbb{P}_{k}^{n} \backslash V(f)\right) \cong \mathbb{Z} / d \mathbb{Z}$ for any irreducible homogeneous polynomial f of degree $d>0$.
Solution: See Hartshorne, Proposition II.6.5 and Example II.6.5.1.
6. For any locally factorial noetherian separated integral scheme X and any $n \geqslant 0$ prove that there are natural isomorphisms
(a) $\mathrm{Cl}\left(X \times \mathbb{A}^{n}\right) \cong \mathrm{Cl}(X)$ and
(b) $\mathrm{Cl}\left(X \times \mathbb{P}^{n}\right) \cong \mathrm{Cl}(X) \times \mathbb{Z}$.

Solution: For (a) see Hartshorne, Proposition II.6.6 when $n=1$; the general case follows by induction. For (b) let $H:=X \times V\left(X_{n}\right)$ denote the hyperplane at infinity in $X \times \mathbb{P}^{n}$. Then $\left(X \times \mathbb{P}^{n}\right) \backslash H \cong X \times \mathbb{A}^{n}$, and by Exercise 5a, we obtain an exact sequence

$$
\mathbb{Z} \xrightarrow{i} \mathrm{Cl}\left(X \times \mathbb{P}^{n}\right) \xrightarrow{j} \mathrm{Cl}\left(X \times \mathbb{A}^{n}\right) \rightarrow 0 .
$$

Let η_{X} be the generic point of X. The morphism $\varphi: \mathbb{P}_{K(X)}^{n} \cong \eta_{X} \times \mathbb{P}^{n} \hookrightarrow X \times \mathbb{P}^{n}$ is dominant and, as we showed in $\S 5.9$, thus induces a homomorphism $\varphi^{*}: \operatorname{DivCl}(X \times$ $\left.\mathbb{P}^{n}\right) \rightarrow \operatorname{DivCl}\left(\mathbb{P}_{K(X)}^{n}\right) \cong \mathbb{Z}$. Since $\operatorname{Cl}\left(X \times \mathbb{P}^{n}\right) \cong \operatorname{DivCl}\left(X \times \mathbb{P}^{n}\right)$, we obtain a morphism $r: \operatorname{Cl}\left(X \times \mathbb{P}^{n}\right) \rightarrow \mathbb{Z}$. Moreover, since H corresponds to a hyperplane in $\mathbb{P}_{K(X)}^{n}$, it follows that $r([H])=1$. Thus $r \circ i=\mathrm{id}_{\mathbb{Z}}$, so i is injective and the sequence is split. Using part (a), we obtain $\mathrm{Cl}\left(X \times \mathbb{P}^{n}\right) \cong \mathrm{Cl}(X) \times \mathbb{Z}$.
7. Which of the following divisors is principal, resp. ample, resp. very ample, resp. equivalent to an effective divisor?
(a) $D=V\left(X^{3}+Y^{3}+Z^{3}\right)-V\left(X^{2}+Y^{2}+Z^{2}\right)$ on \mathbb{P}_{k}^{2}.
(b) $D=-P$ for $P:=V(x-1, y)$ on $X:=\operatorname{Spec} \mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)$.
(c) $D=a \operatorname{diag} \mathbb{P}_{k}^{1}+b \operatorname{pr}_{1}^{*} P+c \operatorname{pr}_{2}^{*} P$ on $\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$ for $P \in \mathbb{P}^{1}(k)$ and $a, b, c \in \mathbb{Z}$.

Solution:

(a) For any non-zero homogeneous polynomial $f \in k[X, Y, Z]$ of degree $d>0$ the quotient $\frac{f}{Z^{d}}$ is a non-zero rational function on \mathbb{P}_{k}^{2} with $\operatorname{divisor} \operatorname{div}\left(\frac{f}{Z^{d}}\right)=V(f)-$
$d V(Z)$. Thus D is equivalent to the effective divisor $3 V(Z)-2 V(Z)=V(Z)$. As that is ample and very ample, so is D. Since $[V(Z)]$ is the generator of $\mathrm{Cl}\left(\mathbb{P}_{k}^{2}\right) \cong \mathbb{Z}$, it follows that D is not principal.
(b) Here $X \cong \mathbb{P}_{\mathbb{R}}^{1} \backslash V\left(U^{2}+V^{2}\right)$ where $I:=V\left(U^{2}+V^{2}\right)$ is a closed point with residue field $\mathbb{R}(I) \cong \mathbb{C}$ of degree 2 ; hence $\mathrm{Cl}(X) \cong \mathbb{Z} / 2 \mathbb{Z}$ by Exercise 5 b above. Also P is a closed point with residue field \mathbb{R}, hence of degree 1 ; so it represents the non-trivial element of $\mathrm{Cl}(X)$ of order 2 . Thus $D=-P$ is equivalent to the effective divisor P, but is not principal. On the other hand any invertible sheaf on an affine scheme is ample; hence D is ample. Since X is of finite type over k it follows that every sufficiently large tensor power of $\mathcal{O}(D)$ is very ample. Thus for odd $n \in \mathbb{Z}^{>0}$ large enough, the divisor $n D$ is very ample. Since D has order 2 , it follows that $n D \sim D$; hence D is very ample.
(c) The solution to Exercise 6 b for $X=\mathbb{P}_{k}^{1}$ and the fact that $\mathrm{Cl}\left(\mathbb{P}_{k}^{1}\right) \cong \mathbb{Z}$ together show that $\mathrm{Cl}\left(\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}\right) \cong \mathbb{Z}^{2}$ with generators $\left[\mathrm{pr}_{1}^{*} P\right]$ and $\left[\mathrm{pr}_{2}^{*} P\right]$. Identify the function fields of the two copies of \mathbb{P}_{k}^{1} with $k(x)$ and $k(y)$, respectively, where P corresponds to the point $x=y=\infty$. Then a direct calculation on open charts shows that $\operatorname{div}(x-y)=\operatorname{diag} \mathbb{P}_{k}^{1}-\operatorname{pr}_{1}^{*} P-\operatorname{pr}_{2}^{*} P$. Therefore $[D]=(a+b)\left[\mathrm{pr}_{1}^{*} P\right]+$ $(a+c)\left[\operatorname{pr}_{2}^{*} P\right]$. Thus D is principal if and only if $a+b=a+c=0$, and it is equivalent to an effective divisor if $a+b, a+c \geqslant 0$.
For the converse and the other properties we use the fact that $\mathcal{O}(P) \cong \mathcal{O}(1)$ on \mathbb{P}_{k}^{1}. Thus $\mathcal{O}(D) \cong \operatorname{pr}_{1}^{*} \mathcal{O}(a+b) \otimes \operatorname{pr}_{2}^{*} \mathcal{O}(a+c)$ on $\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$. A quick calculation shows that

$$
\begin{equation*}
\Gamma\left(\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}, \mathcal{O}(D)\right) \cong \Gamma\left(\mathbb{P}_{k}^{1}, \mathcal{O}(a+b)\right) \otimes_{k} \Gamma\left(\mathbb{P}_{k}^{1}, \mathcal{O}(a+c)\right) \tag{*}
\end{equation*}
$$

If D is equivalent to an effective divisor D^{\prime}, then $\mathcal{O}(D) \cong \mathcal{O}\left(D^{\prime}\right)$ possesses a nonzero global section; hence both $\mathcal{O}(a+b)$ and $\mathcal{O}(a+c)$ must possess a non-zero global section on \mathbb{P}_{k}^{1}. We already know that this requires $a+b, a+c \geqslant 0$. Thus D is equivalent to an effective divisor if and only if $a+b, a+c \geqslant 0$.
If $a+b, a+c>0$, then $\mathcal{O}(a+b)$ and $\mathcal{O}(a+c)$ are very ample on \mathbb{P}_{k}^{1}; hence by the Segre embedding D is very ample. If by contrast $a+b \leqslant 0$, every section in $(*)$ is constant on the first factor \mathbb{P}_{k}^{1}; hence D cannot be very ample. The same argument works in the second factor; thus D is very ample if and only if $a+b$, $a+c>0$.
Finally, since $\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$ is separated of finite type over k, the divisor D is ample if and only if some positive multiple $n D$ is very ample. We have just seen that this is equivalent to $n(a+b), n(a+c)>0$; hence to $a+b, a+c>0$; so again D is ample if and only if $a+b, a+c>0$.

