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Solutions 6

PicArRD GrOUP, Di1vIsSORS, DIVISOR CLASSES

Let £ be a field.

1. Prove that Auty(P}) is naturally isomorphic to PGL,, 1 (k).
Solution: See Hartshorne, Example 11.7.1.1.

2. Consider a morphism ¢: P} — P}* over k which does not factor through a k-valued
point of P}". Show that n < m and that ¢ is the composite of the d-uple embedding
P? — PY for a uniquely determined d > 1 and a morphism P} — L — P} induced
by linear polynomials (g, . .., ¢,,, where L is a linear subspace of PY. Deduce that
¢ has finite fibers and that dim ¢(P}) = n.

Solution: Giving a morphism P} — IP}* over k corresponds to giving an invertible
sheaf £ on P} along with global sections fy, ..., f,, generating it. Since Pic(P})
is generated by the class of O(1), we can without loss of generality assume that
L = O(d) for some integer d. This d is unique except if n = 0, but in that case
P} = Speck, so the morphism factors through a k-valued point, which was ruled

out by assumption. Then fy, ..., f,, are homogenous polynomials of degree d which
are not all 0; hence d > 0. If d = 0, the f; are constant and ¢ factors through
the closed point (fp : ... : fim) € P™(k), which was ruled out by assumption.

Thus d > 1. Since the f; generate the invertible sheaf O(d), their joint zero locus
Y :=V(fo,..., fm) must be empty. AsdimY > n—(m+1), it follows that n < m.

Now recall that the d-uple embedding v4: Pf — PY is given by the same invertible
sheaf O(d) on P} but with all monomials of degree d as sections. Since each f; is
a linear combination of such monomials, there are linear forms ¢, ..., ¢, on PY
such that vi¢; = f; for all 4. Let L := V ({y,...,¢,) C PY. The {; generate OPkN(l)
over PY \ L and define a linear projection p: P ~\ L — P such that p*X; = ¢;
for each i = 0,...,m. Since v;'(L) =Y = @, it follows that v, factors through
PY . L. We have (povy)*X; = f; for all i, and thus ¢ = p o v,.

To show that ¢ has finite fibers, it is sufficient to show that pot, where ¢: v4(P}) —

PY is the canonical embedding, has finite fibers. Let z € P{". Then = € D;Pg for

some ¢ and p‘l(D;Pg“:) = Dz’“N, which is affine. It follows that

(pou)\(z) = p~ (&) Nwa(B}) C D;*

is affine. But it is also closed in the projective variety v4(P}) and hence projec-
tive. It follows that (p o ¢)~!(x) is finite, as desired. Finally, we conclude that
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dim p(P}) = n by noting that dimP} — dim ¢(PP}) is bounded above by the di-
mension of any non-empty fiber of ¢ [Hartshorne, Exercise 11.3.22], which we have
just shown is equal to 0.

. Consider the nodal cubic curve X := V(C(C—B)A—B?*) C P;. Prove that
Pic(X) =2 k* x Z.

(Hint: Recall that X has the normalization 7: P}, = X. To describe an invertible
sheaf £ on X, describe 7L and find out which additional information is necessary
to determine L.)

Solution: In §5.8 we constructed m: X := P}, — X such that the inverse image of
the singular point Py with coordinates (A : B : C') = (1: 0 : 0) is the reduced closed
subscheme {0,1} € X and that 7 induces an isomorphism X ~ {0,1} 5 X~ {F,}.
We also constructed affine charts which show that

(3.1) Ox = {femOx [ f(1) = f(0)}.

Now observe that for any invertible sheaf £ on X, the pullback 7*L is an invertible
sheaf on X and 7 induces isomorphisms of 1-dimensional k-vector spaces

(32) (7T*£>0 ®OX,0 k é ,Cpo ®OX,P0 k ;> (ﬂ'*E)l ®O}"{,0 k.

Since Pic(P}) & Z with generator O(1) = Oy (o), we can choose an isomorphism
u: 7L = Og(d - o0) for a unique integer d. Then the composite isomorphism in
(3.2) amounts to an isomorphism

(3.3) k = OX,O ®O>"<,ok = OX(d~oo)0 ®O>"<,ok = OX(d-OO)l ®0X,ok = k.

This is multiplication by an element A € k*. Note that u is unique up to an
automorphism of O ¢(d - 00), and any automorphism of an invertible sheaf is mul-
tiplication by a nowhere vanishing section of the structure sheaf. In this case u is
therefore unique up to a scalar I'(X, (’))X() = k. Since this scalar appears equally
on both sides of (3.2), the scalar A is independent of the choice of u. A similar
calculation shows that A\ depends only on the isomorphism class of £. Together
this therefore defines a map Pic(X) — k* x Z, [L] — (A,d). As the construction
is compatible with tensor product, this map is a homomorphism.

If [£] lies in the kernel, we have d = 0 and A = 1. Then 7*£ = O3 and (3.1) shows
that £ = Ox. Thus the homomorphism is injective. For arbitrary (A, d) € k* x Z
set

(3.4) L = {fenO0z(d-00)]| f(1)=X-f(0)}.

Using (3.1) and a quick local calculation one finds that this is an invertible sheaf
on X which gives back the pair (A, d). Thus the homomorphism is surjective, and
hence an isomorphism, as desired.

Aliter: Follow Hartshorne Example 11.6.11.4 and Exercises 11.6.7 and 11.6.9.
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*4. Determine the Picard group of the cuspidal cubic curve V(Y?Z — X3) C P3.

Solution: Here again the normalization of X := V(Y?Z — X?3) is isomorphic to
P}, but the inverse image of the unique singular point Py = (0: 0 : 1) is a k-valued
point with multiplicity 2. Follow Hartshorne Exercise I1.6.9.

5. (a) For any noetherian integral scheme X and any irreducible closed subscheme
Y C X of codimension 1, construct a natural exact sequence Z — Cl(X) —
ClX \Y)—0.

(b) Prove that CI(P} \ V(f)) = Z/dZ for any irreducible homogeneous polyno-
mial f of degree d > 0.

Solution: See Hartshorne, Proposition I1.6.5 and Example 11.6.5.1.

6. For any locally factorial noetherian separated integral scheme X and any n > 0
prove that there are natural isomorphisms

(a) CI(X x A™) = Cl(X) and

(b) CI(X x P™) = Cl(X) x Z.

Solution: For (a) see Hartshorne, Proposition 11.6.6 when n = 1; the general
case follows by induction. For (b) let H := X x V(X,,) denote the hyperplane at

infinity in X x P". Then (X x P")\ H = X x A", and by Exercise 5a, we obtain
an exact sequence

Z - CL(X x P") - CL(X x A") —0.

Let nx be the generic point of X. The morphism ¢: Phex) = nx x P — X xP"is
dominant and, as we showed in §5.9, thus induces a homomorphism ¢*: DivCl(X x
P") — DivCl(P% x)) = Z. Since CI(X x P") = DivCl(X x P"), we obtain a
morphism r: ClI(X x P") — Z. Moreover, since H corresponds to a hyperplane
in P ), it follows that r([H]) = 1. Thus r o = idg, so i is injective and the
sequence is split. Using part (a), we obtain CI(X x P") = Cl(X) x Z.

7. Which of the following divisors is principal, resp. ample, resp. very ample, resp.
equivalent to an effective divisor?

(a) D=V(X?+Y3+ 7% - V(X?+Y?+ Z?) on Pi.
(b) D= —P for P:=V(zx—1,y) on X := SpecR[z,y]/(z* +y* — 1).
(¢) D =adiagP}, + bpr; P+ cprs P on P} x Pi for P € P!(k) and a,b,c € Z.

Solution:

(a) For any non-zero homogeneous polynomial f € k[X,Y, Z] of degree d > 0 the
quotient £ is a non-zero rational function on P? with divisor div(;) = V(f) —



dV(Z). Thus D is equivalent to the effective divisor 3V (Z) — 2V (Z) =V (Z). As
that is ample and very ample, so is D. Since [V (Z)] is the generator of C1(P?) = Z,
it follows that D is not principal.

(b) Here X = P, \ V(U? + V?) where I := V(U? + V?) is a closed point with
residue field R(I) = C of degree 2; hence Cl(X) = Z/2Z by Exercise 5b above.
Also P is a closed point with residue field R, hence of degree 1; so it represents
the non-trivial element of ClI(X) of order 2. Thus D = —P is equivalent to the
effective divisor P, but is not principal. On the other hand any invertible sheaf
on an affine scheme is ample; hence D is ample. Since X is of finite type over k it
follows that every sufficiently large tensor power of O(D) is very ample. Thus for
odd n € Z>° large enough, the divisor nD is very ample. Since D has order 2, it
follows that nD ~ D; hence D is very ample.

(c) The solution to Exercise 6b for X = P} and the fact that C1(P}) = Z together
show that CI(P; x P}) = Z? with generators [pr P] and [prj P]. Identify the
function fields of the two copies of P} with k(z) and k(y), respectively, where P
corresponds to the point x = y = oo. Then a direct calculation on open charts
shows that div(z — y) = diagP} — pr} P — prj P. Therefore [D] = (a + b)[pr} P] +
(a + ¢)[prs P|]. Thus D is principal if and only if a + b = a + ¢ = 0, and it is
equivalent to an effective divisor if a + b, a + ¢ > 0.

For the converse and the other properties we use the fact that O(P) = O(1) on Py.
Thus O(D) = pri O(a + b) ® pri O(a + ¢) on Pp x Pi. A quick calculation shows
that

(%) [(P, x Py, O(D)) 2 T(P;, O(a+ b)) @ T'(P;, O(a + ¢)).

If D is equivalent to an effective divisor D', then O(D) = O(D') possesses a non-
zero global section; hence both O(a + b) and O(a + ¢) must possess a non-zero
global section on P;. We already know that this requires a + b, a + ¢ > 0. Thus
D is equivalent to an effective divisor if and only if a + b, a + ¢ > 0.

If a+b, a+c>0, then O(a + b) and O(a + ¢) are very ample on P}; hence by
the Segre embedding D is very ample. If by contrast a + b < 0, every section in
(%) is constant on the first factor P;; hence D cannot be very ample. The same
argument works in the second factor; thus D is very ample if and only if a + b,
a+c>0.

Finally, since P x P}, is separated of finite type over k, the divisor D is ample if
and only if some positive multiple nD is very ample. We have just seen that this
is equivalent to n(a + b), n(a + ¢) > 0; hence to a + b, a + ¢ > 0; so again D is
ample if and only if a + b, a + ¢ > 0.



