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Solutions 6

Picard Group, Divisors, Divisor Classes

Let k be a field.

1. Prove that Autk(Pn
k) is naturally isomorphic to PGLn+1(k).

Solution: See Hartshorne, Example II.7.1.1.

2. Consider a morphism ϕ : Pn
k → Pm

k over k which does not factor through a k-valued
point of Pm

k . Show that n 6 m and that ϕ is the composite of the d-uple embedding
Pn
k → PN

k for a uniquely determined d > 1 and a morphism PN
k −L→ Pm

k induced
by linear polynomials `0, . . . , `m, where L is a linear subspace of PN

k . Deduce that
ϕ has finite fibers and that dimϕ(Pn

k) = n.

Solution: Giving a morphism Pn
k → Pm

k over k corresponds to giving an invertible
sheaf L on Pn

k along with global sections f0, . . . , fm generating it. Since Pic(Pn
k)

is generated by the class of O(1), we can without loss of generality assume that
L = O(d) for some integer d. This d is unique except if n = 0, but in that case
Pn
k
∼= Spec k, so the morphism factors through a k-valued point, which was ruled

out by assumption. Then f0, . . . , fm are homogenous polynomials of degree d which
are not all 0; hence d > 0. If d = 0, the fi are constant and ϕ factors through
the closed point (f0 : . . . : fm) ∈ Pm(k), which was ruled out by assumption.
Thus d > 1. Since the fi generate the invertible sheaf O(d), their joint zero locus
Y := V (f0, . . . , fm) must be empty. As dimY > n−(m+1), it follows that n 6 m.

Now recall that the d-uple embedding νd : Pn
k → PN

k is given by the same invertible
sheaf O(d) on Pn

k but with all monomials of degree d as sections. Since each fi is
a linear combination of such monomials, there are linear forms `0, . . . , `m on PN

k

such that ν∗d`i = fi for all i. Let L := V (`0, . . . , `m) ⊂ PN
k . The `i generate OPN

k
(1)

over PN
k r L and define a linear projection p : PN

k r L → Pm
k such that p∗Xi = `i

for each i = 0, . . . ,m. Since ν−1d (L) = Y = ∅, it follows that νd factors through
PN
k r L. We have (p ◦ νd)∗Xi = fi for all i, and thus ϕ = p ◦ νd.

To show that ϕ has finite fibers, it is sufficient to show that p◦ι, where ι : νd(Pn
k) ↪→

PN
k is the canonical embedding, has finite fibers. Let x ∈ Pm

k . Then x ∈ DPm
k

Xi
for

some i and p−1(D
Pm
k

Xi
) = D

PN
k

`i
, which is affine. It follows that

(p ◦ ι)−1(x) = p−1(x) ∩ νd(Pn
k) ⊂ D

PN
k

`i

is affine. But it is also closed in the projective variety νd(Pn
k) and hence projec-

tive. It follows that (p ◦ ι)−1(x) is finite, as desired. Finally, we conclude that
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dimϕ(Pn
k) = n by noting that dimPn

k − dimϕ(Pn
k) is bounded above by the di-

mension of any non-empty fiber of ϕ [Hartshorne, Exercise II.3.22], which we have
just shown is equal to 0.

3. Consider the nodal cubic curve X := V (C(C−B)A−B3) ⊂ P2
k. Prove that

Pic(X) ∼= k× × Z.
(Hint: Recall that X has the normalization π : P1

k � X. To describe an invertible
sheaf L on X, describe π∗L and find out which additional information is necessary
to determine L.)

Solution: In §5.8 we constructed π : X̃ := P1
k � X such that the inverse image of

the singular point P0 with coordinates (A : B : C) = (1 : 0 : 0) is the reduced closed
subscheme {0, 1} ⊂ X̃ and that π induces an isomorphism X̃r{0, 1} ∼→ Xr{P0}.
We also constructed affine charts which show that

(3.1) OX
∼= {f ∈ π∗OX̃ | f(1) = f(0)}.

Now observe that for any invertible sheaf L on X, the pullback π∗L is an invertible
sheaf on X̃ and π induces isomorphisms of 1-dimensional k-vector spaces

(3.2) (π∗L)0 ⊗OX̃,0
k

∼←− LP0 ⊗OX,P0
k

∼−→ (π∗L)1 ⊗OX̃,0
k.

Since Pic(P1
k) ∼= Z with generator O(1) ∼= OX̃(∞), we can choose an isomorphism

u : π∗L ∼→ OX̃(d · ∞) for a unique integer d. Then the composite isomorphism in
(3.2) amounts to an isomorphism

(3.3) k = OX̃,0 ⊗OX̃,0
k = OX̃(d · ∞)0 ⊗OX̃,0

k
∼−→ OX̃(d · ∞)1 ⊗OX̃,0

k = k.

This is multiplication by an element λ ∈ k×. Note that u is unique up to an
automorphism of OX̃(d ·∞), and any automorphism of an invertible sheaf is mul-
tiplication by a nowhere vanishing section of the structure sheaf. In this case u is
therefore unique up to a scalar Γ(X̃,O×

X̃
) = k×. Since this scalar appears equally

on both sides of (3.2), the scalar λ is independent of the choice of u. A similar
calculation shows that λ depends only on the isomorphism class of L. Together
this therefore defines a map Pic(X)→ k× × Z, [L] 7→ (λ, d). As the construction
is compatible with tensor product, this map is a homomorphism.

If [L] lies in the kernel, we have d = 0 and λ = 1. Then π∗L ∼= OX̃ and (3.1) shows
that L ∼= OX . Thus the homomorphism is injective. For arbitrary (λ, d) ∈ k××Z
set

(3.4) L := {f ∈ π∗OX̃(d · ∞) | f(1) = λ · f(0)}.

Using (3.1) and a quick local calculation one finds that this is an invertible sheaf
on X which gives back the pair (λ, d). Thus the homomorphism is surjective, and
hence an isomorphism, as desired.

Aliter: Follow Hartshorne Example II.6.11.4 and Exercises II.6.7 and II.6.9.
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*4. Determine the Picard group of the cuspidal cubic curve V (Y 2Z −X3) ⊂ P2
k.

Solution: Here again the normalization of X := V (Y 2Z − X3) is isomorphic to
P1
k, but the inverse image of the unique singular point P0 = (0 : 0 : 1) is a k-valued

point with multiplicity 2. Follow Hartshorne Exercise II.6.9.

5. (a) For any noetherian integral scheme X and any irreducible closed subscheme
Y ⊂ X of codimension 1, construct a natural exact sequence Z→ Cl(X)→
Cl(X r Y )→ 0.

(b) Prove that Cl(Pn
k r V (f)) ∼= Z/dZ for any irreducible homogeneous polyno-

mial f of degree d > 0.

Solution: See Hartshorne, Proposition II.6.5 and Example II.6.5.1.

6. For any locally factorial noetherian separated integral scheme X and any n > 0
prove that there are natural isomorphisms

(a) Cl(X × An) ∼= Cl(X) and

(b) Cl(X × Pn) ∼= Cl(X)× Z.

Solution: For (a) see Hartshorne, Proposition II.6.6 when n = 1; the general
case follows by induction. For (b) let H := X × V (Xn) denote the hyperplane at
infinity in X × Pn. Then (X × Pn) rH ∼= X ×An, and by Exercise 5a, we obtain
an exact sequence

Z i // Cl(X × Pn)
j // Cl(X × An) // 0.

Let ηX be the generic point of X. The morphism ϕ : Pn
K(X)

∼= ηX×Pn ↪→ X×Pn is

dominant and, as we showed in §5.9, thus induces a homomorphism ϕ∗ : DivCl(X×
Pn) → DivCl(Pn

K(X))
∼= Z. Since Cl(X × Pn) ∼= DivCl(X × Pn), we obtain a

morphism r : Cl(X × Pn) → Z. Moreover, since H corresponds to a hyperplane
in Pn

K(X), it follows that r([H]) = 1. Thus r ◦ i = idZ, so i is injective and the

sequence is split. Using part (a), we obtain Cl(X × Pn) ∼= Cl(X)× Z.

7. Which of the following divisors is principal, resp. ample, resp. very ample, resp.
equivalent to an effective divisor?

(a) D = V (X3 + Y 3 + Z3)− V (X2 + Y 2 + Z2) on P2
k.

(b) D = −P for P := V (x− 1, y) on X := SpecR[x, y]/(x2 + y2 − 1).

(c) D = a diagP1
k + b pr∗1 P + c pr∗2 P on P1

k × P1
k for P ∈ P1(k) and a, b, c ∈ Z.

Solution:

(a) For any non-zero homogeneous polynomial f ∈ k[X, Y, Z] of degree d > 0 the
quotient f

Zd is a non-zero rational function on P2
k with divisor div( f

Zd ) = V (f) −
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dV (Z). Thus D is equivalent to the effective divisor 3V (Z)− 2V (Z) = V (Z). As
that is ample and very ample, so is D. Since [V (Z)] is the generator of Cl(P2

k) ∼= Z,
it follows that D is not principal.

(b) Here X ∼= P1
R r V (U2 + V 2) where I := V (U2 + V 2) is a closed point with

residue field R(I) ∼= C of degree 2; hence Cl(X) ∼= Z/2Z by Exercise 5b above.
Also P is a closed point with residue field R, hence of degree 1; so it represents
the non-trivial element of Cl(X) of order 2. Thus D = −P is equivalent to the
effective divisor P , but is not principal. On the other hand any invertible sheaf
on an affine scheme is ample; hence D is ample. Since X is of finite type over k it
follows that every sufficiently large tensor power of O(D) is very ample. Thus for
odd n ∈ Z>0 large enough, the divisor nD is very ample. Since D has order 2, it
follows that nD ∼ D; hence D is very ample.

(c) The solution to Exercise 6b for X = P1
k and the fact that Cl(P1

k) ∼= Z together
show that Cl(P1

k × P1
k) ∼= Z2 with generators [pr∗1 P ] and [pr∗2 P ]. Identify the

function fields of the two copies of P1
k with k(x) and k(y), respectively, where P

corresponds to the point x = y = ∞. Then a direct calculation on open charts
shows that div(x− y) = diagP1

k − pr∗1 P − pr∗2 P . Therefore [D] = (a+ b)[pr∗1 P ] +
(a+ c)[pr∗2 P ]. Thus D is principal if and only if a + b = a + c = 0, and it is
equivalent to an effective divisor if a+ b, a+ c > 0.

For the converse and the other properties we use the fact that O(P ) ∼= O(1) on P1
k.

Thus O(D) ∼= pr∗1O(a + b)⊗ pr∗2O(a + c) on P1
k × P1

k. A quick calculation shows
that

(∗) Γ(P1
k × P1

k,O(D)) ∼= Γ(P1
k,O(a+ b))⊗k Γ(P1

k,O(a+ c)).

If D is equivalent to an effective divisor D′, then O(D) ∼= O(D′) possesses a non-
zero global section; hence both O(a + b) and O(a + c) must possess a non-zero
global section on P1

k. We already know that this requires a + b, a + c > 0. Thus
D is equivalent to an effective divisor if and only if a+ b, a+ c > 0.

If a + b, a + c > 0, then O(a + b) and O(a + c) are very ample on P1
k; hence by

the Segre embedding D is very ample. If by contrast a + b 6 0, every section in
(∗) is constant on the first factor P1

k; hence D cannot be very ample. The same
argument works in the second factor; thus D is very ample if and only if a + b,
a+ c > 0.

Finally, since P1
k × P1

k is separated of finite type over k, the divisor D is ample if
and only if some positive multiple nD is very ample. We have just seen that this
is equivalent to n(a + b), n(a + c) > 0; hence to a + b, a + c > 0; so again D is
ample if and only if a+ b, a+ c > 0.
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