
D-MATH Algebraic Geometry II HS 2017
Prof. Richard Pink

Solutions 8

Sheaves of Differentials, Canonical Sheaf, Smoothness

Let k be a field. Recall that a variety over k is a reduced scheme X of finite type
over k. We say that X is nonsingular if it is regular at every point.

1. Let X be a noetherian scheme, and let F be a coherent sheaf on X. Show that any
point x ∈ X, such that Fx is a free OX,x-module, possesses an open neighborhood
U ⊂ X such that F|U is free. Deduce that F is locally free if and only if Fx is a
free OX,x-module for all closed points x ∈ X.

Solution: For the first statement, we may assume without loss of generality that
X = SpecR is affine and that F = M̃ for some finitely generated R-module M .
Write x = p ∈ SpecR. By assumption, there is an isomorphism ϕp : Rn

p
∼→ Mp.

Localizing if necessary, this extends to a homomorphism ϕ : Rn → M . Then
kerϕ and cokerϕ are finitely generated R-modules with (kerϕ)p = (cokerϕ)p = 0.
Choose finitely many generators ni and for each i choose ui ∈ R r p such that
ni

ui
= 0. Since p is a prime ideal, the product u of these ui then again lies in Rr p

and satisfies ni

u
= 0 for all i. Thus (kerϕ)u = (cokerϕ)u = 0, and by exactness

of localization ϕ induces an isomorphism Rn
u
∼→ Mu. Thus SpecRu is an open

neighborhood with the desired property.

Since X is noetherian, every point in X specializes to a closed point. See [Stacks,
Tag 01OU, Lemma 27.5.9]. Let y ∈ X and let x ∈ X be a closed point with
x ∈ {y}, then Fy ∼= Fx ⊗OX,x

OX,y. Thus the first statement implies the second.

2. (a) Let Y1 and Y2 be schemes over X and let Y := Y1×X Y2. Construct a natural
isomorphism

ΩY/S
∼= pr∗1ΩY1/X ⊕ pr∗2ΩY2/X .

(b) If Y1 and Y2 are nonsingular varieties over a perfect field k, construct a natural
isomorphism

ωY/k ∼= pr∗1ωY1/k ⊗ pr∗2ωY2/k.

Solution: (a) By the base change property for differentials we have ΩY/Y1
∼=

pr∗2ΩY2/X . Combining this with the exact sequence associated to the composition
Y → Y1 → X we obtain an exact sequence

pr∗1ΩY1/X
i // ΩY/X

// pr∗2ΩY2/X
// 0.

We obtain a similar exact sequence by symmetry. In particular, we have a surjec-
tive morphism j : ΩY/X � pr∗1ΩY1/X . We claim that j ◦ i = idpr∗1ΩY1/X

. It suffices to
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prove this when X and Yi for i = 1, 2 are affine, in which case the desired result
follows easily from writing the relevant maps explicitly.

(b) Let n := dimY and ni := dimYi for i = 1, 2. Since all sheaves involved are
locally free, the same proof as in linear algebra yields the identity

n∧
(pr∗1ΩY1/X ⊕ pr∗2ΩY2/X) ∼=

⊕
p+q=n

( p∧
pr∗1ΩY1/X ⊗

q∧
pr∗2ΩY2/X

)
.

Since ΩYi/X is locally free of rank ni for i = 1, 2, the only non-trivial term on the
right-hand side is

n1∧
pr∗1ΩY1/X ⊗

n2∧
pr∗2ΩY2/X = pr∗1ωY1/k ⊗ pr∗2ωY2/k.

We thus obtain the desired result by applying
∧n to both sides of the isomorphism

from part (a).

3. Let X be a nonsingular variety over an algebraically closed field k. We call TX :=
HomOX

(ΩX/k,OX) the (relative) tangent sheaf of X (over k). A global section of
TX is called a tangent field on X.

(a) Show that TX is locally free. What is its rank?

(b) Describe TPn
k

by an explicit short exact sequence.

(c) Does P1
k possess a nowhere vanishing tangent field?

**(d) Does Pnk possess a nowhere vanishing tangent field for arbitrary n?

Solution: (a) Since ΩX/k is locally free of rank n := dimX and TX = Ω∨X/k, it
follows directly that TX is locally free of rank n as well.

(b) Recall that there is a short exact sequence

0→ ΩPn
k/k
→ OPn

k
(−1)n+1 → OPn

k
→ 0.

On applying the left exact functor HomOX
(−,OX) we obtain a sequence

0→ OPn
k
→ OPn

k
(1)n+1 → TPn

k
→ 0

which is exact except possibly on the right. But from commutative algebra we
know that any short exact sequence of modules 0→ M → M ′′ → M ′ → 0 over a
ring A splits if M ′ is a free A-module. Moreover, the functor HomA(−, A) preserves
split exact sequences. Applying this to any open affine SpecA ⊂ Pnk we deduce
that the sequence is also right exact.

(c) In this case we have ΩP1
k/k
∼= ωP1/k

∼= OP1
k
(−2). It follows that TPn

k

∼= OP1
k
(2).

A tangent field thus corresponds to a homogeneous polynomial of degree 2 on P1
k.

Since any such polynomial has a zero in P1
k, it follows that every tangent field on

P1
k must vanish somewhere.
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*4. Let i : Y ↪→ X be a closed immersion of codimension 1 of a nonsingular variety X
over an algebraically closed field k, whose ideal sheaf J can be locally generated
by one element at every point. We define the canonical sheaf of such Y as

ω◦Y/k := i∗ωX/k ⊗ i∗(J /J 2)∨.

(a) Prove that ω◦Y/k is an invertible sheaf.

(b) Verify that ω◦Y/k
∼= ωY/k if Y is nonsingular.

(c) Determine ΩY/k and ω◦Y/k for the nodal curve Y = V (C(C−B)A−B3) ⊂ P2
k

and explain the difference.

Solution: (a) Since X is nonsingular, its local rings are regular and hence integral.
Thus J is locally generated by one element in an integral domain and so locally
free of rank 1, in other words, an invertible sheaf on X. Thus i∗(J /J 2) is an
invertible sheaf on Y . Since ωX/k is invertible and tensor products, pullbacks and
duals of invertible sheaves are also invertible, the result follows.

(b) Tensoring both sides of the natural isomorphism i∗ωX/k ∼= ωY/k ⊗ i∗(J /J 2)
from the course by i∗(J /J 2)∨ yields an isomorphism

ωY/k ∼= i∗ωX/k ⊗ i∗(J /J 2)∨ = ω◦Y/k

as desired.

(c) In this case ωP2
k/k
∼= OP2

k
(−3) ∼= J because the curve has degree 3. Therefore

ω◦Y/k
∼= OY . Also Y is non-singular except at the point y := (1 : 0 : 0); so by (b)

the sheaf ω◦Y/k is naturally isomorphic to ωY/k = ΩY/k over Y r {y}.

To determine ΩY/k near y we look at the affine chart DA ⊂ P2
k. Using the coor-

dinates b := B
A

and c := C
A

we have Y ∩ DA = SpecR for R := k[b, c]/(f) with
the polynomial f(b, c) := c(c− b)− b3. The second exact sequence for differentials
yields the presentation

(J /J 2)(Y ∩DA) d // (i∗ΩX/k)(Y ∩DA) // ΩY/k(Y ∩DA) // 0

R · [f ] d // R · db⊕R · dc // ΩR/k
// 0.

[f ] � // [df ] = [∂f
∂b

] · db+ [∂f
∂c

] · dc

To read off the structure of ΩR/k, observe that the homomorphism

π : R · db⊕R · dc −→ R, g · db+ h · dc 7→ g · [∂f
∂c

]− h · [∂f
∂b

]

is zero on the image of d. Also the polynomials ∂f
∂b

= −c − 3b2 and ∂f
∂c

= 2c − b
and f together generate the maximal ideal (b, c) ⊂ k[b, c]. Thus the image of π
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is the maximal ideal m := (b, c)/(f) of R. Another little computation shows that
kerπ = im(d); hence π induces an isomorphism ΩR/k

∼→ m. In particular we see
that ΩY/k is not locally free at y. (Note: It is easy to see that d is injective here,
but that does not matter for the stated question.)

To describe ΩY/k globally and to compare it with ω◦Y/k, observe that the above
formula for π appears canonically in the natural pairing

(R · db⊕R · dc)×R · [f ] // R · db ∧ dc,

(ω, [f ]) � // ω ∧ [df ] = π(ω) · db ∧ dc.

This in turn arises by taking sections over Y ∩DA from the natural pairing

i∗ΩP2
k/k
× i∗(J /J 2) // i∗Ω2

P2
k/k

= i∗ωP2
k/k
,

(ω, [g]) � // ω ∧ [dg].

As the latter induces the isomorphism ωY/k ∼= ω◦Y/k outside y, by this pairing we

can identify ω◦Y/k naturally with the free module of rank 1 with basis db∧dc
[df ]

over
Y ∩ DA. The above calculation for π then yields an isomorphism between ΩY/k

and m · db∧dc
[df ]

over Y ∩DA. Together this yields a natural isomorphism

ΩY/k
∼= M · ω◦Y/k ∼= M⊗ ω◦Y/k,

where M ⊂ OY is the ideal sheaf of the singular point y. Since ω◦Y/k
∼= OY/k, we

deduce that ΩY/k
∼= M.

To summarize, ω◦Y/k and ΩY/k are isomorphic where Y is regular, but it was clear
in advance that they cannot be isomorphic at the singular point y, because the
former is an invertible sheaf by (a), but the latter is not locally free there because
of the isomorphism ΩY/k ⊗OY ,y k(y) ∼= m/m2. (We will see later that ω◦Y/k really

does play the same important role that is played by ωY/k in the regular case.)

5. (Smooth Morphisms and the Jacobian Criterion) Let f : X → Y be a morphism
of schemes and d > 0 an integer. We say that f is smooth of relative dimension d
at x ∈ X, if there exist affine open neighborhoods U of x and V = SpecR of f(x)
such that f(U) ⊂ V , and an open immersion

j : U ↪→ SpecR[T1, . . . , Tn]/(f1, . . . , fn−d)

of R-schemes for suitable n and fi, such that the Jacobian matrix

Jf1,...,fn−d
(x) :=

(
∂fi

∂Tj(x)

)
i,j
∈Mn−d×n(κ(x))

has rank n− d. We call f smooth if it is smooth at all points x ∈ X. Show:
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(a) Smoothness is local on the source and the target.

(b) Smoothness is invariant under base change.

(c) Smoothness is invariant under composition.

(d) Every open immersion is smooth of relative dimension 0.

(e) The set of points of X at which f is smooth is open.

Solution: (a), (b) and (d) are clear from the definition.

(c) Suppose that f : X → Y is smooth of relative dimension d at x ∈ X and
g : Y → Z is smooth of relative dimension e at f(x) ∈ Y . Then there are affine
open neighborhoods U of x and f(U) ⊂ V = SpecA of f(x) and g(V ) ⊂ W =
SpecB with open immersions

j : U ↪→ SpecA[S1, . . . , Sn]/(f1, . . . , fn−d)

and
k : V ↪→ SpecB[T1, . . . , Tm]/(g1, . . . , gm−e).

Let F := (f1, . . . , fn−d) ⊂ A[S] and G := (g1, . . . gm−e) ⊂ B[T ] and let C :=
B[T ]/G. Since k is an open immersion, there is a standard affine open neighbor-
hood of f(x) of the form SpecCh ⊂ V . Note that Ch ∼= C[T ]/(hT − 1). Letting
gm+1−e := hT − 1, the Jacobian Jg1,...,gm+1−e

(
f(x)

)
has rank m+ 1− e since

h
(
f(x)

)
=
∂gm+1−e

∂T
6= 0.

By replacing V with SpecCh and U with an affine open neighborhood of x con-
tained in f−1(SpecCh), we may thus assume that k is an isomorphism. But then
the composition

U ↪→ SpecA[S]/F ∼= SpecC[S]/F ∼= SpecB[T , S]/F +G

is an open immersion. The corresponding Jacobian is a block matrix of the form(
Jg1,...,gm−e(x) ∗

0 Jf1,...,fn−d
(x)

)
,

which has rank n+m−(d+e). It follows that g◦f is smooth of relative dimension
d+ e at x. This also implies that if f and g are smooth morphisms, then g ◦ f is
smooth.

(e) The rank condition in the definition of smoothness can be phrased by saying
that there exists an r × r minor of the Jacobian matrix which does not vanish at
x. If such a minor does not vanish at x, it also does not vanish in a neighborhood
of x. This means that if f is smooth of relative dimension d at x, then it is also
smooth of relative dimension d in a neighborhood of x; hence the set of points of
X at which f is smooth is open.
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6. Let X be a scheme of finite type over k, where k is perfect. We call X smooth over
k if the structure morphism X → Spec k is smooth. Assume that X is irreducible,
and show that X is smooth over k if and only if Ω1

X/k is locally free of rank dimX.

Solution: We separate the proof into steps:

(1) As a preparation consider an ideal I := (f1, . . . , fm) ⊂ k[X1, . . . Xn] and let
R := k[X]/I. The second exact sequence for the surjection k[X]� R reads

I/I2 d−→ R⊗k[X] Ωk[X]/k −→ ΩR/k −→ 0.

Here the term in the middle is a free R-module with basis dX1, . . . , dXn. Also
I/I2 is generated by the residue classes of f1, . . . , fm, and for each i we have
dfi =

∑
j
∂fi
Xj
dXj. Thus we find an exact sequence

(∗) Rm J−→Rn −→ ΩR/k −→ 0

with the jacobian matrix J := Jf1,...,fn−d
:=
(
∂fi
Xj

)
i,j

.

(2) Now suppose that X is smooth of relative dimension d over k. Then for any
closed point x ∈ X there exist an open affine neighborhood U of x and an open
immersion j : U ↪→ SpecR for

R := k[T1, . . . , Tn]/(f1, . . . , fn−d),

such that Jf1,...,fn−d
(x) is an n× (n−d)-matrix of rank n− d at x. After possibly

permuting X1, . . . , Xn we may assume that the submatrix (∂fi
Xj

)n−di,j=1 is invertible

at x. Let m ⊂ R be the maximal ideal associated to x. Then the composite
homomorphism Rn−d

m
J→ Rn

m
π→ Rn−d

m , where π denotes the projection to the first
n − d variables, is an isomorphism. The inclusion Rd

m ↪→ Rn
m, y 7→ (0, y) thus

induces an isomorphism

Rd
m
∼−→ coker

(
J : Rn−d

m → Rn
m

) (∗)∼= ΩR/k ⊗R Rm.

Since x was an arbitrary closed point, by exercise 1 it follows that ΩX/k is locally
free of rank d.

(3) In the situation of (2) we claim that d = dimX, so that a scheme which
is “smooth of relative dimension d over k” is actually of dimension d. To show
this consider any closed point x ∈ X, corresponding to the maximal ideal m ⊂ R.
Then the residue field k(x) = R/m is a finite extension of k. Since k is per-
fect, this extension is separable. By the course we therefore have a natural
isomorphism ΩR/k ⊗R k(x) ∼= m/m2. Since ΩR/k is locally free of rank d, it
follows that dimk(x) m/m

2 = d. Thus dimOX,x 6 d. On the other hand the
ideal of X is generated by n − d elements, so by the Krull dimension theorem
we have codimX⊂An

k
6 n − d and hence dimX > d. Together it follows that

dimX = dimOX,x = dimk(x) m/m
2 = d.
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(4) Conversely suppose that ΩX/k is locally free of rank d := dim(X). Since
smoothness is local, we may assume that X = SpecR with R = k[X1, . . . , Xn]/I
and I = (f1, . . . fm). Let x ∈ X be a closed point corresponding to a maximal
ideal m ⊂ R. Then the exact sequence (∗) implies that Jf1,...,fm(x) has rank n− d.
Choose n−d of the fi corresponding to an invertible (n−d)×(n−d) minor. After
a possible permutation we may assume that these are f1, . . . , fn−d. Let X ′ ⊂ An

k

be the closed subscheme defined by the ideal (f1, . . . fn−d). By the same argument
as in (c) we have dimOX′,x = dimk(x) m

′/m′2 = d, where m′ is the maximal ideal
of OX′,x. Thus OX′,x is a regular local ring. In particular it is an integral domain.
As it surjects to OX,x, which by assumption has the same Krull dimension d, the
surjection must be an isomorphism. It follows that the embedding X ↪→ X ′ is an
isomorphism at x and hence over a whole neighborhood of x. By construction X ′

is smooth of relative dimension d over k at x; hence so is X. Since x ∈ X was an
arbitrary closed point and the set of closed points of X is dense and smoothness
is an open condition, we conclude that f is smooth.

(5) Remark: The same statement also holds if k is not perfect. The main point is
to show that in either case the set of closed points of X whose residue fields are
separable extensions of k is Zariski dense.

For this see https://stacks.math.columbia.edu/tag/056U.
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