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Prof. Richard Pink

Solutions 9

Čech Cohomology

1. Show that the complex of abelian groups . . .
2→ Z/4Z 2→ Z/4Z 2→ Z/4Z 2→ . . . is

acyclic but not contractible.

Solution: Let us denote the complex by C•. It is clear that C• is exact and hence
acyclic. Suppose C• is contractible. Then there exists a degree −1 morphism of
complexes h : C• → C• with id = 2 ◦ h+ h ◦ 2. In each degree, the images of both
2◦h and h◦2 must lie in 2Z/4Z. But two submodules of 2Z/4Z can never generate
Z/4Z. Hence the identity cannot be written as such a sum, a contradiction. Thus
C• is not contractible.

2. Let X be a separated and quasicompact scheme and let (Fi)i∈I be a filtered direct
system of quasicoherent sheaves on X. Show that for any p > 0 there is a natural
isomorphism

lim−→
i

Hp(X,Fi) ∼= Hp(X, lim−→
i

Fi).

Solution: We begin with some preparations that tell us what the direct limit does
with quasicoherent sheaves on an arbitrary scheme X.

Claim 1. Let (Fi)i∈I be a direct system of sheaves on X. Then for any open
subscheme U ⊂ X there is a natural isomorphism

(lim−→
i

Fi)|U ∼= lim−→
i

(Fi|U).

Proof. Let j : U ↪→ X denote the canonical open inclusion. Then for any sheaf F
on X we have F|U = j−1F . Recall that j−1 is left-adjoint to the functor j∗ from
the category of sheaves on U to the category of sheaves on X. It follows that j−1

commutes with direct limits, as desired.

Claim 2. Let X = SpecA and let (Mi)i be a direct system of A-modules. Then
there is a natural isomorphism of quasi-coherent sheaves

(lim−→
i

Mi)
∼ ∼= lim−→

i

M̃i.

Proof. By §5.3 of the course the functor M 7→ M̃ is left adjoint to the global
sections functor; hence it commutes with direct limits.
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Claim 3. For any direct system of quasi-coherent sheaves on X the sheaf lim−→i
Fi

is quasi-coherent, and for any open affine U ⊂ X there is a natural isomorphism

(lim−→
i

Fi)(U) ∼= lim−→
i

(Fi(U)).

Proof. Combine Claims 1 and 2.

Now assume that X is separated and quasicompact and that (Fi)i∈I is a filtered
direct system of quasi-coherent sheaves on X. Then lim−→i

Fi is also quasi-coherent,
so we may compute both sides of the desired isomorphism with a fixed finite
open affine covering U = (Ui)i=1,...,n of X. Since X is separated, each intersection
Ui0...ip := Ui0 ∩ . . . ∩ Uip is then again affine. By Claim 3 and the fact that direct
limits of abelian groups commute with finite products we deduce that for each
p > 0 we have a natural isomorphism

lim−→
i

Cp(U ,Fi) = lim−→
i

∏
i0,...,ip

Fi(Ui0...ip) ∼=
∏
i0,...,ip

(
lim−→
i

Fi
)
(Ui0...ip) = Cp(U , lim−→

i

Fi).

The naturality also implies that these isomorphisms combine to an isomorphism
of complexes

lim−→
i

C•(U ,Fi) ∼= C•(U , lim−→
i

Fi).

Now note that in the category of modules over a ring, taking the direct limit over
a filtered set is an exact functor. For this, see [Stacks, Tag 00DB, Lemma 10.8.8].
This means that taking filtered direct limits commutes with kernels and cokernels.
Thus we obtain the desired isomorphism

lim−→
i

Hp(X,Fi) ∼= lim−→
i

Hp(U ,Fi) ∼= Hp(U , lim−→
i

Fi) ∼= Hp(X, lim−→
i

Fi).

3. Let X be a scheme.

(a) Construct a natural isomorphism Pic(X) ∼= H1(X,O×X).

*(b) Suppose that X is integral and let KX denote the constant sheaf with values
in K(X). Show that the exact sequence

1→ O×X → K
×
X → K

×
X/O

×
X → 1

induces the isomorphism DivCl(X)
∼→ Pic(X) from §5.9 of the course.

Solution: (a) We divide the solution into steps:

(1) Let L be an invertible sheaf on X. Let U = (Ui)i∈I be an open covering of
X such that for every i ∈ I, the restriction L|Ui

is free, generated by a section
ei ∈ L(Ui). For every i, j, the ei|Uij

and ej|Uij
are both generators of L|Uij

, and
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hence differ by an automorphism of OUij
. There thus exist fij ∈ OX(Uij)

× such
that ei|Uij

= fij · ej|Uij
. Moreover, for every i, j, k we have

fik|Uijk
· ek|Uijk

= ei|Uijk
= fij|Uijk

· ej|Uijk
= (fij|Uijk

· fjk|Uijk
) · ek|Uijk

,

and hence
fij|Uijk

· fjk|Uijk
= fik|Uijk

. (∗)

This means that the 1-cochain f := (fij)ij ∈ C1(U ,O×X) satisfies

df =
(
fjk|Uijk

· f−1ik |Uijk
· fij|Uijk

)
ijk

= (1)ijk

and so is a 1-cocyle.

(2) Any different choice of generators of L|Uij
has the form giei for sections ei ∈

OX(Ui)
× and results in the 1-cocyle (gi|Uij

· g−1j |Uij
· fij)ij. This differs from f by

the coboundary d(g−1j ). Thus the class [f ] ∈ H1(U ,O×X) is independent of the
choice of the ei.

(3) Let V = (Vj)j∈J be a refinement of U , with σ : J → I such that Vj ⊂ Uσ(j)
for every j ∈ J . Then for each j the restriction eσ(j)|Vj is a generator for L|Vj .
The cocycle in C1(V ,O×X) associated to these is simply σ∗f . It follows that the
image of [f ] in H1(X,O×X) = lim−→V H

1(V ,O×X) is independent of the choice of U .
We denote it by ϕ(L). Clearly it depends only on the isomorphism class of L, so
this defines a map

ϕ : Pic(X) −→ H1(X,O×X).

(4) For two invertible sheaves L and L′ on X, choose an open covering U which
trivializes both. For every i, let ei and e′i be generators of L|Ui

and L′|Ui
, respec-

tively. Define f and f ′ as in step (1) for L and L′. Then each ei⊗ e′i is a generator
of (L⊗L′)|Ui

and the associated 1-cocycle is (fij · f ′ij)ij. It follows that ϕ(L⊗L′)
is equal to the class of f · f ′ and hence equal to ϕ(L) · ϕ(L′). Thus the map ϕ is
a homomorphism.

(5) If ϕ(L) = 1, we have [σ∗f ] = [1] in H1(V ,O×X) for some refinement V of U
and some σ as in (3). After replacing U by V we may assume that [f ] = [1] in
H1(U ,O×X). This means that f = dg for a 0-cocycle g = (gi)i ∈ C0(U ,O×X), in
other words that fij = gj|Uij

· g−1i |Uij
for all i, j. Then ei|Uij

= gj|Uij
· g−1i |Uij

· ej|Uij

and hence giei|Uij
= gjej|Uij

. Thus the sections giei glue to a global section e′ ∈
L(X). As they generate L over each Ui, this yields an isomorphism OX

∼→ L. It
follows that the homomorphism ϕ is injective.

(6) For surjectivity, let c ∈ H1(X,O×X). Then c is represented by some [f ] ∈
H1(U ,O×X) for an open covering U = {Ui}i∈I . For every i, let Li := OUi

. Then
multiplication by fij induces an isomorphism Li|Uij

∼= Lj|Uij
for every i, j. Since f

is a 1-cocycle, these isomorphisms glue to an invertible sheaf L on X. (Compare
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Section 3.2 of Spring 2017.) By construction, we see that ϕ(L) = c. Hence ϕ is
surjective, and we conclude that ϕ is an isomorphism.

(b) The relevant part of the associated long exact cohomology sequence, see [Liu,
Prop 5.2.15] is

. . .→ H0(X,K×X)
ψ // H0(X,K×X/O

×
X) δ // H1(X,O×X)→ . . . .

Here H0(X,K×X/O
×
X) is the group of Cartier divisors and the image of ψ the

subgroup of principal Cartier divisors; hence coker(ψ) ∼= DivCl(X). Any Cartier
divisor D on X is determined by an open covering U = (Ui)i∈I of X and sections

fi ∈ K×X(Ui) such that for every i, j, we have
fi|Uij

fj |Uij
∈ O×X(Uij). The associated

invertible sheaf O(D) is given by O(D)|Ui
= OUi

· f−1i ⊂ K|Ui
for each i. The 1-

cocycle associated to O(D) in (a) is then g := (
fj |Uij

fi|Uij
)ij ∈ C1(U ,O×X). An explicit

calculation using the snake lemma shows that [g] is precisely the image of D under
the connecting homomorphism δ. (Or is it the image of −D?)

4. Compute H∗(X,OX) for X = P2
kr{(0 : 0 : 1)} and X = A2

kr{(0, 0)} for a field k.
Conclude that X is not affine.

Solution: (a) Write A2
k = Spec k[X, Y ]. Then X = A2

k r {(0, 0)} has the affine
open covering U = {DX , DY }. Since X is separated, it follows that Hn(U ,OX) ∼=
Hn(X,OX). The ordered Čech complex (with X < Y ) for F with respect to U
reads

. . . // 0 // k[X±1, Y ]× k[X, Y ±1] // k[X±1, Y ±1] // 0 // . . .

(f, g) � // g − f

and is non-zero only in degrees 0 and 1. Thus

Hn(X,OX) =


k[X, Y ] if n = 0,

k[X±1, Y ±1]/(k[X±1, Y ] + k[X, Y ±1]) ∼=
⊕

i,j<0 k ·X iY j if n = 1,

0 otherwise.

(b) Now write P2
k = ProjR, where R := k[X, Y, Z]. Then X := P2

k r {(0 : 0 : 1)}
has the affine open covering U = {DX , DY }, and so Hn(U ,OX) ∼= Hn(X,OX) by
the same reasoning as above. The ordered Čech complex is

. . . // 0 // RX,0 ×RY,0
// RXY,0

// 0 // . . .

(f, g) � // g − f.

Thus

Hn(X,OX) =


RX,0 ∩RY,0 = k if n = 0,

RXY,0/(RX,0 +RY,0) =
⊕

i,j>0 k ·
Zi+j

XiY j if n = 1,

0 otherwise,
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where we take the intersection RX,0 ∩RY0 inside of RXY,0.

(c) In both cases, we have H1(X,OX) 6= 0, and it follows from Serre’s criterion
that X is not affine. (Compare Spring 2017, Sheet 6, Exercise 5)

*5. Find a sheaf of OX-modules F on an affine scheme X for which Hn(X,F) 6= 0 for
some n > 0.

Solution: Let X = A1
k = Spec k[T ] and U := X r {0}. Consider the canonical

inclusion j : U ↪→ X. Recall that we have an extension by zero sheaf j!OU on X,
which has the structure of an OX-module but is not quasicoherent. Let i : {0} ↪→
A1
k be the inclusion of the origin into A1 (as topological spaces, not as schemes).

By [Hartshorne, Exercise II.2.19], there is a short exact sequence

0→ j!OU → OX → i∗i
−1OX → 0.

By [Liu, Proposition 5.2.15], we have an associated exact sequence

. . .→ H0(X,OX)→ H0(X, i∗i
−1OX)→ H1(X, j!OU)→ H1(X,OX)→ . . .

Recalling that H0 is naturally isomorphic to the global sections functor, we have
H0(X,OX) ∼= k[T ] and H0(X, i∗i

−1OX) ∼= H0({0}, i−1OX) ∼= OX,0 ∼= k[T ](T ) and
the map between them is the natural inclusion. Moreover, since X is affine and
OX is quasi-coherent, we have H1(X,OX) = 0. It follows that

H1(X, j!OU) ∼= k[T ](T )/k[T ] 6= 0.
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