
READING GROUP 2017 PART I: ZEROS OF GAUSSIAN ANALYTIC

FUNCTIONS

In the �rst part of the reading group we will be studying the zero sets of Gaussian analytic
functions (GAF).

De�nition 1. Let Λ be a complex domain (for us it will be either D or C). Then F (z) : Λ→ C is a
Gaussian analytic function (GAF) on Λ if it is almost surely analytic on Λ and if for any z1, . . . , zn
the vector (F (z1), . . . , F (zn)) has a Gaussian distribution.

It is easy to see that such functions exist: one can just take (ξn)n∈N to be i.i.d standard normals
and set

F (z) =
∑
n≥0

ξncnz
n.

Choosing su�ciently rapid decay of cn then guarantees any wished radius of convergence. For
example:

• FD(z) =
∑

n≥0 ξnz
n is analytic on D - we call this the hyperbolic GAF.

• FC(z) =
∑

n≥0 ξn
1√
n!
zn is an entire function - we called it the planar GAF.

We will study the zero sets ZF of the GAF F and basically ask how it looks like, and how it
compares to other known point processes like for example the Poisson point process.

Isometry invariant zero sets. A �rst cute observation is that the zero sets ZFD and ZFC are
invariant in law with respect to Mobius transformations of the disk and planar isometries respec-
tively. A deeper result says that they are essentially the unique Gaussian analytic functions with
this property:

Theorem 2 (Rigidity of the GAF). FD(z) is (essentially) the only GAF on D whose zero set is
invariant in law w.r.t. Mobius transformations of the disk. Similarly, FC(z) is (essentially) the only
GAF whose zero set is invariant in law w.r.t. isometries of the plane.

Here essentially means that there is one free parameter, and there is also the possibility to multiply
by eg for any �xed analytic function g. Proving this theorem and some basic properties about the
zero set of the planar GAF is the content of the �rst two lectures. We will follow the book �Zeros
of Gaussian Analytic Functions and Determinantal Point Processes� by Hough, Krishnapur, Peres
and Virag.

Zero set of the hyperbolic GAF. Thereafter we will look closer at the zero set of the hyperbolic
GAF. It comes out that this is the only model whose zero set has a determinantal structure. This
means that given disjoint sets Di ⊂ D and denoting by ZF (D) the number of points in a set D, we
can calculate:

E [ZFD(D1)× · · · × ZFD(Dn)] = π−n
∫
D1×···×Dn

det

[
1

(1− zizj)2

]
i,j

dz1 . . . dzn,

where by dzi we denote the Lebesgue measure. Sometimes one calls ρ(z1, . . . , zn) = det
[

1
(1−zizj)2

]
i,j

the joint intensities / correlation functions ρ(z1, . . . , zn).
This determinantal structure, that is not present in the planar case allows to �nd precise results.

For example it follows that
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• {|z| : FD(z) = 0} has the same law as {U1/2k
k } where Ui are i.i.d U [0, 1];

• the �hole probability�, i.e. that there are no points in the disk of radius r is equal to

exp(−π
2+o(1)

12(1−r) ) as r → 1.

Again, we basically follow the above-mentioned book.

Hole probability for the planar GAF. Our next task might be to �nd the hole probability for
the planar GAF. More precisely to show that

Theorem 3 (Hole probability for the planar GAF). The probability pR that there the planar GAF
has no zeros in the disk of radius R satis�es exp(−cR4) ≤ pR ≤ exp(−CR4).

This should be compared with the same probability for the PPP, in which case the exponent
is a constant times R2. A toy model that explain this behaviour is the following: take ξi,j to
be i.i.d standard normal random variables and look at the point process T := {(i, j) + ξi,j}. It
is easy to see that the probability qr that T has no points in the disk of radius r also satis�es
exp(−c1R4) ≤ qR ≤ exp(−c2R4).

Allocation / matching / transport. This toy model, although one can see it doesn't encompass
for example the right level of �uctuations of the zero set, hints in the right direction. Indeed, the
zero set of the planar GAF can be seen as a perturbed lattice, the perturbations are only not exactly
Gaussian and certainly not independent:

Theorem 4 (Zeros of the planar GAF as a perturbed lattice). There exists random variables ξi,j
with i, j ∈ Z such that

• {(i, j) + ξi,j} has the same law as ZFC;
• ξi,j is invariant under shifts of Z2;

• for some positive c we have Eecξ
2
0,0 <∞.

This result can also be seen as a matching result: we are matching the zero set of the planar GAF
to the lattice points. It could also be seen as a transport result, transporting a unit mas s from each
zero to each lattice point. A similar task would be to transport the mass of the zero set (seen as a
sum of Dirac masses) to the Lebesgue measure. In fact there is an explicit way to do this: consider
the potential u(z) = log |FC(z)| − 1

2 |z|
2 reminding the 2D gravitational potential. One can observe

that the local minima of the potential u correspond to the zeros of FC . Thus when one considers
the ODE

dZ(t)

dt
= −∇u(Z(t)),

then in fact any point will �ow to one of the zeros. The �nal result we would like to discuss describes
the basins of attraction for all the individual zeros:

Theorem 5 (Gravitational allocation). For the ODE described above:

• the boundaries of the basins of attractions are �nite unions of smooth curves;
• the basins of attraction divide C into connected cells of equal area π;
• for any point z ∈ C, the probability that the diameter of the basin of attraction containing
this point is larger than R can be bounded by c exp(−CR(logR)3/2) and C exp(−cR

√
logR).

Time permitting, we will also try to see this result from the point of view of optimal transport
of measures.
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