
Gravitational Allocation

to zeroes of the Gaussian entire function.

Reading group: Zürich, 2017.

1 Optimal Transport

1.1 The problem

The theory of optimal transport stems from the following problem proposed by Monge in 1781
[Mon81] and later studied by Kantorovich [Kan42] in the 1940s. Suppose we have two probability
measures µ and ν on a domain Ω ⊂ Rd and let Π(µ, ν) be the set of couplings between µ and ν.
In the optimal transport world these are known as transport plans from µ to ν, and represent a
scheme for transporting mass distributed under µ to mass distributed under ν. We would like
to know which transport plans are the most “cost-effective”, in the sense that mass is moved as
small a distance as possible.

Question 1.1 What is

min{
∫
|x− y|π(dx, dy) |π ∈ Π(µ, ν)}? (1.1)

And what are/is the minimising π ∈ Π(µ, ν)?

A transport plan is called a transport map if the coupling is deterministic (i.e. if (X,Y ) has
law π, then X ∼ µ, Y ∼ ν and Y = T (X) is a deterministic function of X). Equivalently, π ∈ Π
is a transport map if π is the image measure of µ under a map of the form (id×T ) : Ω→ Ω×Ω.
The natural question then follows:

Question 1.2 When do transport maps exist? And when are optimal transport plans given by
transport maps?

Note that the first question is non-trivial: if µ is a dirac mass, then there cannot exist a
transport map from µ to anything other than another dirac mass.

Remark 1.3 In fact, it can be shown that unique optimal transport plans do exist, and are
given by transport maps, as long as µ is absolutely continuous with respect to Lebesgue measure.
However, the minimal cost need not be finite. 1

From now on, we will be primarily interested in just constructing transport plans between
measures (in a more general framework where the measures in question need not be absolutely
continuous or finite). We will return to the problem of how costly they are later.

1For example if µ is an absolutely continuous probability measure on Rd with infinite mean and ν = δ0, then
the cost will always be infinite.
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1.2 Moser’s deformation scheme

Suppose we are working on the open unit disc U ⊂ R2, and that we have two probability
measures µ and ν on U that are absolutely continuous with respect to Lebesgue measure, and
have smooth densities bounded strictly away from 0. Let X be a random variable with law µ.
Given a realisation of X, it is not too hard to believe that we should be able to construct a
continuous curve γ : [0, 1]→ U (which will be a deterministic function of X) such that

(a) γ(0) = X; γ(1)
(d)
= ν; and

(b) γ̇(t) = v(t, γ(t)) for all t ∈ [0, 1], where v : [0, 1]×U→ R2 is a deterministic locally Lipschitz
function, with Neumann boundary condition ∂nv(t, x) = 0 for every t ∈ [0, 1] and x ∈ ∂U.

The Neumann boundary condition here is natural since ν has zero mass on the boundary ∂U,
and we would like to γ(1) to have law ν.

In fact, there are not enough constraints here to determine the function v (if we have a
deterministic way to define γ(1) from γ(0) = X, then there are still plenty of smooth curves we
could draw between them). So, we add the natural assumption:

(c) Law(γ(t)) = ρt for all t ∈ [0, 1] where ρt := (1− t)µ+ tν.

In the following we also write µ(x), ν(x) and ρt(x) for the densities of µ, ν and ρ, which are
all well defined by assumption.

Given (a), (b) and (c) observe that for any φ ∈ C∞c (U)

d

dt
E[φ(γ(t))] =

d

dt

(
(1− t)

∫
U
φ(x)µ(x)dx+ t

∫
U
φ(x)ν(x)dx

)
=

∫
U
φ(x)(ν(x)− µ(x))dx.

On the other hand,

d

dt
E[φ(γ(t))] = E[∇φ · γ̇(t)] =

∫
U
∇φ · v(t, x)ρt(x) dx = −

∫
U
φ(x)

(
∇ · v(t, x) ρt(x)

)
dx.

Putting these together we deduce that

−
(
∇ · v(t, x)ρt(x)

)
= ν(x)− µ(x) (1.2)

for all t ∈ [0, 1] and x ∈ U.

This motivates the following explicit construction of a transport between µ and ν, due to
Moser [Mos65]. Let u be a solution of the equation

∆u(x) = ν(x)− µ(x) (1.3)

with Neumann boundary conditions in U (such a u exists due to our smoothness assumptions
on ν and µ). Define

v(t, x) := − ∇u
ρt(x)

2



and for every x ∈ U, let Zt(x) be the solution of the equation

dZt(x)

dt
= v(t, Zt(x)) ; Z0(x) = x. (1.4)

Then it follows from exactly the same arguments as used to derive (1.2) that if X has law µ,
then Zt(X) has law ρt for every t ∈ [0, 1]. In particular Z1(X) is a deterministic function of X
and has law ν: providing us with a nice explicit transport map between µ and ν.

Remark 1.4 This is not an optimal transport. For optimality, it turns out that we would need
the random curve γ to be a geodesic in U (i.e. a straight line) almost surely, and we can check
that this is not true in the above construction (see [Vil08, Chapter 13]). However, it is still
extremely nice to have a simple and explicit way to transport µ to ν.

1.3 Dirac masses

Now it is clear that it is not possible to transport a unit dirac mass to anything other than
another unit dirac mass. However, it is possible to transport from an absolutely continuous
measure to a dirac mass (or collection of dirac masses); and this is exactly the type of transport
we are interested in.

In this case, the above deformation scheme does not entirely make sense because (a) smooth
solutions to (1.3) do not exist and (b) the density ρt(x) does not exist for all t ∈ [0, 1]. To get
around (a) we instead search for weak solutions to (1.3), which will exist, for example, if µ is
absolutely continuous and ν is a finite collection of point masses. To solve the problem (b) we
simply remove ρt(x) from the denominator, as it is a scalar and so only affects the speed at
which Zt(x) reaches its final destination (the first atom of ν that it hits). If we then decide that
Zt(x) should be constant after it hits this atom, and consider solutions of (1.4) on [0,∞) rather
than [0, 1], we can check that the map x→ Z∞(x) still provides a transport between µ and ν

2 Gravitational allocation scheme

Let

f(z) :=
∑
k

ξk
zk√
k!

(2.1)

be the Gaussian entire function with first intensity measure equal to π−1Leb. Here the ξk are
independent standard complex Gaussians 2. Let Zf denote the random zero set of f , and

nf :=
∑
x∈Zf

δx

be the associated atomic measure. We know from the previous sessions that the set Zf is
translation invariant in law (and that this in fact characterises the analytic function f up to a
one-parameter family).

The main object of today’s session is the paper of Nazarov, Sodin and Volberg [NSV07],
which constructs an explicit transport between Lebesgue measure m(dx) on C, and the random
measure πnf . That is, the authors define an explicit map T : C → C (that is random but a

2with density π−1 e−|z|
2

with respect to Lebesgue measure
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deterministic function of f) such that almost surely nf is the image measure of m under T .
Note that this differs from the framework of Section 1, since both m and nf have infinite mass,
but it turns out that a transport can be constructed in a very similar way. We interpret such
a transport as a way to fairly allocate regions of the complex plane to each of the zeroes of f ;
indeed, if we have such a map then by definition, the Lebesgue mass of {y : T (y) = x} has to
be equal to π for each x in the zero set of f . The transport map in this case is often referred to
as an allocation.

Remark 2.1 Note that the first intensity measure of πnf is equal to Lebesgue measure. For
another Gaussian entire function g with translation invariant zero set (which must have first
intensity equal to some other multiple of Lebesgue measure) an allocation can only be defined
from Lebesgue to a different multiple of ng. This can be done easily by modifying the construction
below, so from now on we will stick to the case when f is given by (2.1).

Figure 1: The function u(z) = log |f(z)| − 1
2 |z|

2 (from [NSV07])

The transport is constructed as follows. Let

u(z) = log |f(z)| − 1

2
|z|2 (2.2)

and define, for z ∈ C \ Zf , Xt(z) to be the solution of

dXt(z)

dt
:= −∇u(z) ; X0(z) = z (2.3)
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on the maximal interval [t−(z), t+(z)] ⊂ R on which it is defined (we will see later, in Section
4, that there is a unique maximal solution with t−(z) ∈ [−∞, 0) and t+(z) ∈ (0,∞]). Let Γz

denote the image {Xt(z) : t ∈ [t−(z), t+(z)]}, which we think of as an oriented curve, up to time
reparameterisation 3. For a ∈ Zf define

B(a) := {z ∈ C : Xt+(z)(z) = a} ∪ {a} (2.4)

Thus the basin B(a) is the collection points that are transported to a under the flow (2.3). We
call the curves Γz gradient curves.

Figure 2: The basins {B(a) : a ∈ Zf} (from [NSV07]).

Theorem 2.2 ([NSV07]) Almost surely, each basin B(a) is bounded by finitely many smooth
gradient curves, has area equal to π, and C = ∪a∈Zf

B(a) up to a set of zero-Lebesgue measure.

This means that, almost surely, the map sending each z ∈ C to the basin that contains it is
an allocation of Lebesgue measure to πnf . Recall from the previous sessions that

∆u = 2πnf − 2m (2.5)

in the distributional sense, and hence, this allocation is very close to that described in Section
1.2.

Remark 2.3 Note that this allocation does depend on the analytic function f , and not just on
the set of zeroes. Indeed, we will see that ∇u has vanishing normal derivative on the boundaries
of the basins, and it is easy to see that if one replaces f with egf for some analytic g, then this
will not be preserved.

Before stating some more results from [NSV07] concerning this scheme, let us first see why
the area of each basin has to be exactly equal to π.

Proof of equal area basins, assuming they are bounded by finitely many smooth gradient curves.
The idea behind the proof is to use that fact that ∆u = 2πnf−2πm (in the distributional sense)

3so we can and will have Γz = Γw for z 6= w
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and then to use Green’s theorem and the fact that our boundary is made up of smooth gradient
curves.

To do this rigorously, take a ∈ Zf and first observe that if we write

u(z) = u1(z) + u2(z)

:= log |z − a|+ (u(z)− log |z − a|)

then u2 is analytic in B(a) with ∆u2 = −2 in B(a), and u1 is analytic in B(a)\{a} with ∆u1 = 0
in B(a) \ {a}. Set Dε = B(a) \D(a, ε). Then we have∫

Dε

∆u(z)dz = −2m(Dε)
ε→0→ m(B(a)) (2.6)

almost surely as ε→ 0. Moreover, we can write∫
Dε

∆u(z)dz =

∫
∂B(a)

∂nu(z) dz −
∫
∂D(a,ε)

∂nu(z) (2.7)

by the Green formula, since we are assuming that the boundary of B(a) is given by finitely
many smooth curves (where the normal derivative means the scalar product of ∇u with the
outward pointing normal to the boundary). We claim that the first term is equal to 0, and that∫
∂D(a,ε) ∂nu(z)→ 0 as ε→ 0. This completes the proof by combining (2.6) and (2.7).
So let us prove the claim. For the second statement, we write

lim
ε→0

∫
∂D(a,ε)

∂nu(z) = lim
ε→0

∫
∂D(a,ε)

∂nu1(z)

which follows because ∂nu2 is smooth and so bounded on ∂D(0, ε), and we are integrating over
a curve of length going to 0. Then because u1(z) = log |z − a| we can apply Cauchy’s theorem
to see that the right hand side of the above is equal to 2π. For the first statement we use the
assumption that ∂B(a) is made up of gradient curves of u. Suppose for contradiction that there
is some z0 ∈ ∂B(a) such that ∇u(z0) has non-zero component in the direction of the normal to
∂B(a). This implies that Γz0 crosses 4 the boundary of ∂B(a) at z0. On the other hand, since
∂B(a) is made up of gradient curves and there is a.s. a unique gradient curve passing through
z0 (see Section 4), Γz0 should be a subset of ∂B(a). This is a contradiction.

�

3 Results and interpretation

Having constructed an allocation of Lebesgue measure to πnf , the authors in [NSV07] then ask
about the cost-effectiveness of the model. Of course for this mass transport the total cost as
defined by (1.1) must be infinite, but we can ask for example, for information on the tails of
|T (z) − z| for a given point z. The better T is localised, the more uniformly spread we expect
the zeroes of f to be.

First, we observe that any given z ∈ C is almost surely contained in some basin. This follows
from Theorem 2.2 and the following lemma (which will also be important in a lot of what
follows):

4i.e. at some non-zero angle
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Lemma 3.1 For any z0 ∈ C,

u(z0 + z)
(d)
= u(z).

Proof. Define

Tz0f(z) := f(z0 + z) e−zz̄0 e−
1
2
|z0|2 .

Then a direct calculation (for the covariances of Tz0f(z)) yields that Tz0f
(d)
= f . Moreover, we

have that

u(z0 + z) = log |f(z0 + z)| − 1

2
|z0 + z|2

= log |f(z0 + z)| − <(zz̄0)− 1

2
|z|2 − 1

2
|z0|2

= log |Tz0f(z)| − 1

2
|z|2,

where by the invariance of Tz0f(z) in law, the last expression has the same law as u(z). �

Now for fixed z we denote by Bz the basin that contains the point z (which is almost surely
well defined by the above comments). In [NSV07], the following theorem is proven concerning
the asymptotics of the size of Bz.

Theorem 3.2 For any z ∈ C and R ≥ 1,

ce−CR(logR)3/2 ≤ P(diam(Bz) > R) ≤ Ce−cR(logR)3/2 (3.1)

where C > 0 and c > 0 are absolute numerical constants.

Let us compare this quickly with another result from the literature. In the paper [ST06] it is
shown that a random set of points in C with the same law as Zf can be constructed by taking
a peturbation of the square lattice:

Zf
(d)
= {
√
π(k + i l) + ξk,l : (k, l) ∈ Z2}

where the ξk,l have subgaussian tails. This clearly provides another way to allocate Lebesgue
measure to πnf (although this is non-explicit, since the construction in [ST06] is non-explicit).
It is claimed in [NSV07] that a modification of this scheme yields a transport ,map T from m
to πnf such that the tail probabilities P(|T (z) − z| > R) decay like exp(−R4(logR)−1) rather
than exp(−R(logR)3/2). The reason that the tail probabilities are higher for the gravitational
allocation scheme is the existence of long, thin “tentacles” around some basins. This is made
precise in [NSV07] through the following result:

Theorem 3.3 For any z ∈ C, ε > 0 and R ≥ 1

c(ε) e−C(ε)R4 ≤ P(m(Bz \D(az, R)) ≥ ε) ≤ C(ε) e−c(ε)R
4

where c(ε) and C(ε) are positive constants depending on ε.
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This says that we can throw away, say, one percent of the area of the basin Bz containing z,
and then the probability that Bz has diameter greater than R will decay like e−R

4
. The authors

in [NSV07] also provide a combinatorial procedure to modify the basins (in a “small way”),
such that the probability of any given modified basin having diameter larger than R decays like
e−R

4(logR)−3/2
.

In fact, we cannot hope for a much faster rate of decay than this since it is proved in [ST05]
that the hole probability P(Zf ∩RU = ∅) is bounded below by c e−CR4

.

Remark 3.4 The gravitational allocation scheme has also been considered as a method for al-
locating Lebesgue measure on Rd to the points Π of a Poisson process with intensity 1 on Rd.
In contrast to the above, the allocation scheme is only shown to work (i.e. to yield a transport
map) when d ≥ 3. One key difference is that in our case, we define u(z) = log |f(z)| − 1

2 |z|
2 and

let points flow according to the vector field

∇u(z) = g(z)− z +
∑
a∈Zf

(z − a)

|z − a|2
,

(for some analytic g). Here the sum is almost surely convergent away from Zf by analyticity of
f .

For the Poisson point process Π, one would analogously like points to flow according to the
vector field

F (z) = z −
∑
a∈Π

(z − a)

|z − a|2

but in this case, it is not clear that the sum will converge. When d ≥ 3 however, the natural
analogue of the gravitational allocation scheme yields a vector field F , where the exponent 2 in
the denominator above is replaced with d. In this case, the sum is known to converge almost
everywhere almost surely.

4 Preliminaries on gradient curves

In this section we recall some basic properties of gradient curves that we will need in what
follows. The material comes mainly from [Her66].

We are interested in solutions of the following equations:

dXt(z)

dt
:= −∇u(z) ; X0(z) = z (4.1)

where z is any point in D := C \ Zf and u(z) := log |f(z)| − 1
2 |z|

2 is as defined in Section 2.
Note that ∇u is analytic on D. By standard ODE theory it then follows that for every z in D,
there exists a unique solution to (4.1) defined on (t−(z), t+(z)) with t±(z) ∈ (0,±∞]. Moreover,
if t−(z) > −∞ or t+(z) < ∞ (or both) we have Xt(z) → ∂D (meaning that Xt approaches a
point of Zf ) or Xt(z)→∞ as t→ t±(z). We write Γz for the curve {Xt(z) : t ∈ [t−(z), t+(z)]}
and call this a gradient curve. We think of the curve as an oriented curve, but up to time
reparameterisation (so we can have Γz = Γw for z 6= w). By uniqueness of solutions to (4.1)
there is exactly one gradient curve passing through each z ∈ D.

We call points w ∈ D with ∇u = 0 singularities of (4.1) and denote the set of all such points
by Crit(u). w ∈ Crit(u) are exactly the points such that Xt(w) = w for all t ∈ (−∞,∞) and
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are clearly the only points (other than ∞) that can be approached by any Xt(z) as t→ −∞ or
t→∞.

Hence, any oriented gradient curve Γ has a starting point s(Γ) ∈ Crit(u) ∪ {∞} and a ter-
minating point t(Γ) ∈ Crit(u) ∪ Zf ∪ {∞}. We have already ruled out the possibility that an
oriented curve Γ has s(Γ) ∈ Zf because −∇u(z) → +∞ as z → a ∈ Zf (in particular, for any
a ∈ Zf there exists some ρ > 0 such that −∇u points outwards from ∂D(a, ρ) at every point of
∂D(a, ρ) ).

4.1 Classification of singularities

A singularity w ∈ Crit(u) is called simple if

∂2u

∂x2

∂2u

∂y2
−
(
∂2u

∂x∂y

)2

6= 0 (4.2)

Lemma 4.1 Simple singularities are isolated.

Proof. By the inverse function theorem, if w is a simple singularity in Crit(u), then ∇u is
invertible in a neighbourhood of w. This implies that ∇u 6= 0 in a neighbourhood of w, and
hence w is an isolated singularity. �

Moreover, at a simple singularity w ∈ Crit(u), one can determine the behaviour of gradient
curves approaching w by approximating solutions to (4.1) with a linearisation of the system. It
then follows, [Her66, Chapter 4], that the behaviour can be classified according to the eigenvalues
of the matrix [

∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂y

∂2u
∂y2

]
evaluated at w. Note that the eigenvalues of this matrix must both be real, and so following
[Her66] we see that we have three possibilities:

(i) both eigenvalues are positive. Gradient curves can terminate, but not start, at such a point.

(ii) both eigenvalues are negative. Gradient curves can start, but not terminate, at such a
point.

(iii) one eigenvalue is positive, and one is negative. There are at most two gradient curves
starting and two gradient curves terminating at such a point (in addition to the constant
gradient curve that stays at the point).

This fits well with our intuition (given the definition of (4.1)) since points satisfying (i) are local
minima of u, points satisfying (ii) are local maxima, and points satisfying (iii) are saddle points.
We also observe here that since ∇u ≤ 0 on D, u in fact has no local minima on D.

Finally we remark that since ∇u is analytic on D, any gradient curve is smooth away from its
starting and terminating points.
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5 Proofs

The key result from which Theorems 2.2 and 3.2 follow is the following theorem concerning the
existence of long gradient curves (which will be discussed in next week’s session). For w ∈ C
and s ≥ 0, we let Q(w, s) be the square of side length 2s centered at w.

Theorem 5.1 ([NSV07]) There exist absolute constants c, C > 0 such that for any R ≥ 1,

P
(
there exists a gradient curve joining ∂Q(0, R) with ∂Q(0, 2R)

)
≤ C e−cR(logR)3/2 .

Let us now see how to prove Theorem 2.2 assuming that the above is true. We first need the
following lemma.

Lemma 5.2 Almost surely, every w ∈ Crit(u) is simple.

Proof. We will begin by deriving conditions for w ∈ C to be a non-simple critical point.
Then we will show that for these conditions to be satisfied anywhere, we are putting too many
constraints on the independent ξk’s. This will imply that, almost surely, no such points exist.

Firstly, for w to be a non-simple singularity, we have the obvious requirement that ∇u(w) =
0 (i.e. w is a singularity). Note that w = 0 is almost surely not in Crit(u) (by translation
invariance of u) and so from now on we may assume that w 6= 0. We write u = u1 + u2 where
u1(z) = log |f(z)| and u2(z) = −|z|2/2. Then on D, u1 is the real part of the analytic function
F (z) = log f(z), and so

∇u1(z) = F ′(z) =
f ′(z)

f(z)
.

We can also calculate that ∇u2 = −z and hence

w ∈ Crit(u)⇒ f ′(w)

f(w)
− w = 0⇔ f(w) = w̄−1f ′(w). (5.1)

Similarly, we can calculate that

∂2u1

∂x2

∂2u1

∂y2
−
(
∂2u1

∂x∂y

)2

= −
(
∂2u1

∂x2

)2

−
(
∂2u1

∂x∂y

)2

= −|F ′′|2 = −
∣∣∣∣(f ′f

)′∣∣∣∣
where we have used the Cauchy–Riemann equations for the first equality.

Since ∂2u2
∂x2

∂2u2
∂y2
−
(

∂2u2
∂x∂y

)2
= 1 we see that for w ∈ Crit(u) to be non-simple, we also require

that ∣∣∣∣w̄ f ′′f ′ (w)− w̄2

∣∣∣∣2 = 1 (5.2)

where we have replaced |(f
′

f )′(w)| with |w̄ f ′′

f ′ (w)− w̄2|2 by (5.1).
Now we will show that (5.1) plus (5.2) is too much to ask for. Indeed, if

f(z) = ξ0 + ξ1z +
∑
k≥2

ξk
zk√
k!

=: ξ0 + ξ1z + h(z),

then conditionally on h(w) (equivalently on {ξk}k≥2), for (5.2) to be satisfied at w, it must hold
that ∣∣∣∣w̄ h′′(w)

h′(w) + ξ1
− w̄2

∣∣∣∣ = 1.
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Since ξ1 is independent of {ξk}k≥2 and Gaussian, the conditional probability that the above
holds at a fixed w, given {ξk}k≥2, is equal to 0. Thus by Fubini, the set of w for which (5.2)
holds is a.s. a set of measure 0, and is determined entirely by {ξk}k≥1. Let us call this set A.

We also write A′ for the set of w ∈ C at which (5.1) holds. We conclude by showing that
P(A′ ∩A 6= ∅) = 0. This implies that with probability 1, no w ∈ C satisfies both (5.1) and (5.2)
simultaneously, and hence completes the proof.

To see why this final claim is true, write

P(∃w ∈ A s.t. f(w) = w̄−1f ′(w)) = E
(
P(∃w ∈ A s.t. f(w) = w̄−1f ′(w) | {ξk}k≥1)

)
= E

(
P
(
∃w ∈ A : ξ0 =

g′(w)

w̄
− g(w)

))
= E

(
P(ξ0 ∈ Ã)

)
,

where Ã is a random set that has Lebesgue measure 0 almost surely and is independent of ξ0

(here g(z) := ξ1z + h(z) is measurable with respect to {ξk}k≥1.) Since ξ0 is Gaussian, this is
indeed equal to 0. �

Proof of Theorem 2.2. By the arguments given in Section 2, we need only prove that, almost
surely, C = ∪a∈Zf

B(a) up to a set of Lebesgue measure 0, and that every basin B(a) is bounded
by finitely many smooth gradient curves.

The long gradient curve theorem, Theorem 5.1, immediately tells us that there are a.s. no
gradient curves starting or terminating at∞. This, together with the considerations from Section
4 and Lemma 5.2, means that all the points in Crit(u) are isolated, and that every gradient curve
has a starting point which is an local maximum of u or a saddle point of u, and a terminating
point which is either in Zf or is a saddle point of u. The gradient curves are also smooth away
from their endpoints, and the diameters of all the basins are finite, since otherwise they would
contain a gradient curve of infinite length.

Let S be the set of all gradient curves Γ that terminate at a saddle point of u (rather than a
zero of f). Note that any point of C that is not in some basin B(a) with a ∈ Zf must lie on a
gradient curve Γ ∈ S. We claim that almost surely, every bounded K ⊂ C intersects only finitely
many Γ ∈ S. To see this, first observe that almost surely, every such K must be contained in a
compact set K̃ that itself contains all the gradient curves Γ ∈ S such that Γ ∩K 6= ∅. Indeed,
if this were not the case then there would exist some N ∈ N such that ∂Q(0, N) is joined to
∂Q(0,M) by a gradient curve for every M > N , and for fixed N this has zero probability by
Theorem 5.1. Now, for every K, the corresponding compact set K̃ must contain all of the points
t(Γ) with Γ ∈ S and Γ ∩ K 6= ∅, and since these are all isolated and K̃ is compact, the set
{t(Γ) : Γ ∈ S and Γ∩K 6= ∅} must be finite. Since any saddle point of u serves as a terminating
point t(Γ) for at most 2 distinct (non-trivial) gradient curves Γ, this implies that the set of
gradient curves in S intersecting K must be finite.

In particular, we see that for any N ∈ N, the Lebesgue measure of {z ∈ NU \ ∪a∈Zf
B(a)} is

equal to zero with probability one. Hence, almost surely we have C = ∪a∈Zf
B(a) up to a set

of Lebesgue measure zero. Moreover, since every B(a) has finite diameter, it must be bounded
by finitely many gradient curves in S, which we already know are smooth. This completes the
proof.

�
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Finally, what is the idea to prove Theorem 3.2?

Firstly, by the translation invariance of u (Lemma 3.1) we see that

diam(Bz)
(d)
= diam(Bw) (5.3)

for any z, w ∈ C. Therefore, by considering B0 and applying Theorem 5.1, we obtain the upper
bound in Theorem 3.2 immediately (indeed, if diam(B0) > R then either B0 = B(a) with
|a| > R/3, so there exists a gradient curve from ∂Q(0, R/20) to ∂Q(0, R/10), or |a| < R/2 and
there exists a gradient curve from ∂Q(0, R/3) to ∂Q(0, 2R/3)).

For the lower bound, the argument is more complicated, and we just give a very brief idea
here. See [NSV07, Section 9] for the detailed proof. The idea is to just consider R such that
R =

√
n for n ∈ N, and to show that for any such R, the point iR is contained in a gradient

curve of length > c′R (some absolute c′ > 0) with probability bounded below by c e−CR(logR)3/2 .
Then by (5.3) the lower bound follows.

To see why the point iR = i
√
n has some reasonable chance to be contained in a long gradient

curve, imagine replacing the Gaussian entire function f(z) with the function g(z) := zn√
n!

. If we

set ug(z) := log |g(z)| − |z|2/2, then we see that ∇ug(z) = 0 on the circle {|z| = n}. It is then
not too hard to see that if one replaces g with, say,

F (z) :=
zn√
n!

(
1 +

z

10R

)
(this is the choice in [NSV07]) then near {|z| =

√
n}, if uF (z) := log |F (z)| − |z|2/2, −∇uF (z)

will still have a small component, O(R−1), in the direction of z, and an angular component of
comparable size in the anti-clockwise direction. This means that if we instead considered the
gradient curves of uF , the point iR would be contained in a gradient curve of length O(R).

In fact, the same will be for the gradient curves of u (the ones that we are interested in), as
long as f is not too big a peturbation of F in the annulus {R − 2 ≤ |z| ≤ R + 2}, say. More
precisely, in [NSV07] it is shown that on the event that |(f − F )/F | ≤ R−2 in this annulus, iR
will be contained in a gradient curve of length ≥ c′R for some absolute constant c′ > 0.

The rest of the proof consists of estimating from below the probability of this event, and we
direct the reader to [NSV07] for these arguments.

6 Questions

• Can we use properties of the gravitational allocation to obtain any of the results that we
have already seen for zeroes of f? For example, the probability of having many zeroes in
a disc, or the hole probability, should be closely related to the size of the basins.

• If we consider the Gaussian analytic function

f(z) :=
L∑

n=0

ξn

√
L(L− 1)...(L− n+ 1)√

n!
zn

for some L ∈ N (this is a Gaussian analytic function whose zeroes are invariant under
isometries of S2 = C ∪ {∞}), what can we say about the gravitation allocation scheme?
In two weeks time, Nina will talk about gravitational allocation for uniformly distributed
points on the sphere, [HPZ17].
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• Going back to the original Gaussian entire function f ; does there exist a transport T of m
to πnf such that supz∈C P(|T (z)− z| > R) decays as e−R

4
?

• How long does it typically take for the gradient curve Γz of a given z ∈ C to reach its
terminal point in Zf?

• Can we say anything more about the optimality of this transport? Of course, the total
cost of the transport given by gravitational allocation will be infinite, but we can ask for
some renormalised cost: for example, the limit of total cost on a large disk, renormalised
by its area. It has been shown in [HS13] that for allocation of Lebesgue measure to points
of a Poisson process with unit intensity, there exists a unique scheme minimising the
expectation of this cost whenever d ≥ 3. Is the same result true for zeroes of the Gaussian
entire function? If so, how close is the gravitational allocation scheme to being optimal?
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