Gravitational allocation to uniform points on the sphere

Nina Holden

MIT

Based on joint work with

Yuval Peres
Microsoft Research
Alex Zhai
Stanford University

Matchings

Stable matching

Optimal matching

Matching of n blue points and n red points sampled uniformly and independently from the torus.

Fair allocations

- For $n \in \mathbb{N}$ let $\mathbb{S}_{n}^{2} \subset \mathbb{R}^{3}$ be the sphere centered at the origin with radius chosen such that the total surface area $\lambda\left(\mathbb{S}_{n}^{2}\right)$ equals n.
- For any set $\mathcal{L} \subset \mathbb{S}_{n}^{2}$ consisting of n points called stars, we say that a measurable function $\psi: \mathbb{S}_{n}^{2} \rightarrow \mathcal{L} \cup\{\infty\}$ is a fair allocation if it satisfies the following:

$$
\begin{equation*}
\lambda\left(\psi^{-1}(\infty)\right)=0, \quad \lambda\left(\psi^{-1}(z)\right)=1, \quad \forall z \in \mathcal{L} \tag{1}
\end{equation*}
$$

- In other words, a fair allocation is a way to divide \mathbb{S}_{n}^{2} into n cells of measure 1 (up to a set of measure 0), with each cell associated to a distinct star in \mathcal{L}.

Notices
 of the American Mathematical Society
 May 2017
 Volume 64, Number 5

AMS Spring Eastern Sectional Sampler
page 437
Mathematical Congress of the Americas 2017: Invited Speakers Lecture Sampler
page 443
CeMFAI: The
Brazilian Center and Its Mathematics Research for Industry
page 450
AMS Prize Announcements page 472

:(1)AMS

Allocation rule

- Let $\mathcal{L} \subset \mathbb{S}_{n}^{2}$ be a random collection of n points.
- An allocation rule is a measurable mapping $\mathcal{L} \rightarrow \psi_{\mathcal{L}}$ such that
- $\psi_{\mathcal{L}}$ is a fair allocation of λ to \mathcal{L} a.s., and
- $\mathcal{L} \mapsto \psi_{\mathcal{L}}$ is rotation-equivariant, i.e., \mathbb{P}-a.s., for any $x \in \mathbb{S}_{n}^{2}$ and any rotation map ϕ, we have $\psi_{\phi(\mathcal{L})}(\phi(x))=\phi\left(\psi_{\mathcal{L}}(x)\right)$.
- We are interested in minimizing $\left|\psi_{\mathcal{L}}(x)-x\right|$ for $x \in \mathbb{S}_{n}^{2}$.

Gravitational allocation

$$
\text { Potential and field: } \quad U(x)=\sum_{z \in \mathcal{L}} \log |x-z|, \quad F(x)=-\nabla_{S} U(x),
$$

Gravitational allocation

Potential and field:

$$
U(x)=\sum_{z \in \mathcal{L}} \log |x-z|, \quad F(x)=-\nabla_{S} U(x),
$$

Flow lines: $\quad \frac{d Y_{x}}{d t}(t)=F\left(Y_{x}(t)\right), \quad Y_{x}(0)=x, \quad t \in\left[0, \tau_{x}\right]$,

Gravitational allocation

Potential and field: $\quad U(x)=\sum_{z \in \mathcal{L}} \log |x-z|, \quad F(x)=-\nabla_{S} U(x)$,
Flow lines: $\quad \frac{d Y_{x}}{d t}(t)=F\left(Y_{x}(t)\right), \quad Y_{x}(0)=x, \quad t \in\left[0, \tau_{x}\right]$, Basin of attraction: $\quad B(z)=\left\{x \in \mathbb{S}_{n}^{2}: \lim _{t \uparrow \tau_{x}} Y_{x}(t)=z\right\}, \quad z \in \mathcal{L}$,

Gravitational allocation

Potential and field: $\quad U(x)=\sum_{z \in \mathcal{L}} \log |x-z|, \quad F(x)=-\nabla_{S} U(x)$,
Flow lines: $\quad \frac{d Y_{x}}{d t}(t)=F\left(Y_{x}(t)\right), \quad Y_{x}(0)=x, \quad t \in\left[0, \tau_{x}\right]$, Basin of attraction: $\quad B(z)=\left\{x \in \mathbb{S}_{n}^{2}: \lim _{t \uparrow \tau_{x}} Y_{x}(t)=z\right\}, \quad z \in \mathcal{L}$,

Terminal point: $\quad \psi(x)= \begin{cases}z & \text { if } x \in B(z) \text { for } z \in \mathcal{L}, \\ \infty & \text { if } x \notin \bigcup_{z \in \mathcal{L}} B(z) .\end{cases}$

Gravitational potential

Examples

One point on the north pole, surrounded by seven other points

Examples

One point on the north pole, surrounded by seven other points

Examples

One point on the south pole and seven points in the northern hemisphere

Examples

One point on the south pole and seven points in the northern hemisphere

Why is the allocation fair?

Divergence theorem, assuming $B\left(z_{0}\right)$ has a piecewise smooth boundary for $z_{0} \in \mathcal{L}$:

$$
\begin{equation*}
\int_{B\left(z_{0}\right)} \Delta_{S} U d \lambda=-\int_{\partial B\left(z_{0}\right)} F(x) \cdot \mathbf{n} d s \tag{2}
\end{equation*}
$$

Observe that if $\lambda\left(\mathbb{S}^{2}\right)=A$, then

$$
\Delta_{S} \log |x-z|=2 \pi \delta_{z}-\frac{2 \pi}{A} \quad \Rightarrow \quad \Delta_{S} U=2 \pi \sum_{z \in \mathcal{L}} \delta_{z}-\frac{2 \pi n}{A} .
$$

Since $F(x) \cdot \mathbf{n}=0$ for $x \in \partial B\left(z_{0}\right)$, we get by insertion into (2) that

$$
2 \pi-\frac{2 \pi n}{A} \lambda\left(B\left(z_{0}\right)\right)=0
$$

Thus $\lambda\left(B\left(z_{0}\right)\right)=\frac{A}{n}$ as claimed.

Main result

Let \mathcal{L} be a collection of $n \geq 2$ points chosen uniformly at random from \mathbb{S}_{n}^{2}.

Theorem (H.-Peres.-Zhai)

For any $p>0$ there is a constant $C_{p}>0$ such that for any $x \in \mathbb{S}_{n}^{2}$

$$
\mathbb{P}[|\psi(x)-x|>r \sqrt{\log n}] \leq C_{p} r^{-p}
$$

In particular, there is a universal constant $C>0$ such that for any $x \in \mathbb{S}_{n}^{2}$,

$$
\mathbb{E}[|\psi(x)-x|] \leq C \sqrt{\log n}
$$

Examples

Simulation based on code written by Manjunath Krishnapur

Examples

Examples

Examples

Earlier results on fair allocations

Let $Y=\operatorname{diam}(B(\psi(x)))$ denote the diameter of the basin containing x.

In the following settings $\mathbb{P}[Y>R]$ decays superpolynomially in R :

- $\mathcal{L} \subset \mathbb{C}$ the zero set of a Gaussian Entire Function f; potential $U=\log |f|-|z|^{2} / 2$ (Nazarov-Sodin-Volberg'07)
- $\mathcal{L} \subset \mathbb{R}^{d}, d \geq 3$, unit intensity Poisson point process; gravitational field F (Chatterjee-Peled-Peres-Romik'10)

Gravitational allocation to the zero set of
the Gaussian Entire Function
Remark: Gravitational allocation to a unit intensity Poisson point process in \mathbb{R}^{2} is not well-defined.

Earlier results on fair allocations

Let $Y=\operatorname{diam}(B(\psi(x)))$ denote the diameter of the basin containing x.

In the following settings $\mathbb{P}[Y>R]$ decays superpolynomially in R :

- $\mathcal{L} \subset \mathbb{C}$ the zero set of a Gaussian Entire Function f; potential $U=\log |f|-|z|^{2} / 2$ (Nazarov-Sodin-Volberg'07)
- $\mathcal{L} \subset \mathbb{R}^{d}, d \geq 3$, unit intensity Poisson point process; gravitational field F (Chatterjee-Peled-Peres-Romik'10)

Remark: Gravitational allocation to a unit intensity Poisson point process in \mathbb{R}^{2} is not well-defined.

Stable marriage allocation (simulation by A. Holroyd)

Application: matchings

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be sampled uniformly and independently at random from \mathbb{S}_{n}^{2} for $n \geq 2$.
- A matching of \mathcal{A} and \mathcal{B} is a bijective function $\varphi: \mathcal{A} \rightarrow \mathcal{B}$.

Corollary (H.-Peres.-Zhai)

We can use gravitational allocation to define a matching, such that for a universal constant $C>0$,

$$
\mathbb{E}[X] \leq C \sqrt{\log n}, \quad X:=\frac{1}{n} \sum_{i=1}^{n}\left|\varphi\left(a_{i}\right)-a_{i}\right|
$$

Application: matchings

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be sampled uniformly and independently at random from \mathbb{S}_{n}^{2} for $n \geq 2$.
- A matching of \mathcal{A} and \mathcal{B} is a bijective function $\varphi: \mathcal{A} \rightarrow \mathcal{B}$.

Corollary (H.-Peres.-Zhai)

We can use gravitational allocation to define a matching, such that for a universal constant $C>0$,

$$
\mathbb{E}[X] \leq C \sqrt{\log n}, \quad X:=\frac{1}{n} \sum_{i=1}^{n}\left|\varphi\left(a_{i}\right)-a_{i}\right|
$$

Ajtai-Komlós-Tusnády'84: There exists a universal constant $C>1$ such that for the optimal matching φ of $2 n$ points in $[0, \sqrt{n}]^{2}$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[C^{-1} \sqrt{\log n} \leq X \leq C \sqrt{\log n}\right]=1
$$

Proof Matching Corollary

The points of \mathcal{B} define a gravitational potential.

Proof Matching Corollary

Pick the points of \mathcal{A} one by one.
By the main theorem, $\mathbb{E}\left[\left|\varphi\left(a_{1}\right)-a_{1}\right|\right] \leq C \sqrt{\log n}$.

Proof Matching Corollary

Note that the remaining points are uniformly distributed.

Proof Matching Corollary

By the main theorem, $\quad \mathbb{E}\left[\left|\varphi\left(a_{2}\right)-a_{2}\right|\right] \leq C \sqrt{\frac{n}{n-1}} \sqrt{\log (n-1)}$.

Proof Matching Corollary

The remaining points are again uniformly distributed. Repeat the procedure until all points are matched.

Proof Matching Corollary

- Combining the above bounds, we get

$$
\begin{aligned}
X & =\frac{1}{n} \sum_{k=1}^{n}\left|\varphi\left(a_{k}\right)-a_{k}\right|, \\
\mathbb{E}[X] & \leq \frac{C}{n} \sum_{k=1}^{n} \sqrt{\frac{n}{k}} \sqrt{1+\log k} \leq C_{1} \sqrt{\log n},
\end{aligned}
$$

as claimed.

Proof Matching Corollary

- Combining the above bounds, we get

$$
\begin{aligned}
X & =\frac{1}{n} \sum_{k=1}^{n}\left|\varphi\left(a_{k}\right)-a_{k}\right|, \\
\mathbb{E}[X] & \leq \frac{C}{n} \sum_{k=1}^{n} \sqrt{\frac{n}{k}} \sqrt{1+\log k} \leq C_{1} \sqrt{\log n},
\end{aligned}
$$

as claimed.

- The matching algorithm is online: $\varphi\left(a_{k}\right)$ depends only on a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{n}.

Proof Matching Corollary

- Combining the above bounds, we get

$$
\begin{aligned}
X & =\frac{1}{n} \sum_{k=1}^{n}\left|\varphi\left(a_{k}\right)-a_{k}\right|, \\
\mathbb{E}[X] & \leq \frac{C}{n} \sum_{k=1}^{n} \sqrt{\frac{n}{k}} \sqrt{1+\log k} \leq C_{1} \sqrt{\log n},
\end{aligned}
$$

as claimed.

- The matching algorithm is online: $\varphi\left(a_{k}\right)$ depends only on a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{n}.

Greedy/stable matching

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be sampled uniformly and independently at random from \mathbb{S}_{n}^{2} for $n \in \mathbb{N}$.
- Define a matching $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ by iteratively matching closest pairs.
- Define $Y=\left|\varphi\left(a_{1}\right)-a_{1}\right|$. What is $\mathbb{E}[Y]$?

Greedy/stable matching

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be sampled uniformly and independently at random from \mathbb{S}_{n}^{2} for $n \in \mathbb{N}$.
- Define a matching $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ by iteratively matching closest pairs.
- Define $Y=\left|\varphi\left(a_{1}\right)-a_{1}\right|$. What is $\mathbb{E}[Y]$?
- Holroyd-Pemantle-Peres-Schramm'09: For \mathcal{A} and \mathcal{B} Poisson point processes in \mathbb{R}^{2} and $\widehat{Y}=|\varphi(a)-a|$ for a typical point $a \in \mathcal{A}$,

$$
\mathbb{P}[\widehat{Y}>r] \leq C_{1} r^{-0.496 \ldots}
$$

Greedy/stable matching

- Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be sampled uniformly and independently at random from \mathbb{S}_{n}^{2} for $n \in \mathbb{N}$.
- Define a matching $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ by iteratively matching closest pairs.
- Define $Y=\left|\varphi\left(a_{1}\right)-a_{1}\right|$. What is $\mathbb{E}[Y]$?
- Holroyd-Pemantle-Peres-Schramm'09: For \mathcal{A} and \mathcal{B} Poisson point processes in \mathbb{R}^{2} and $\widehat{Y}=|\varphi(a)-a|$ for a typical point $a \in \mathcal{A}$,

$$
\mathbb{P}[\widehat{Y}>r] \leq C_{1} r^{-0.496 \ldots}
$$

- Transferring to \mathbb{S}_{n}^{2},

$$
\mathbb{E}[Y] \leq C_{1} \int_{0}^{\sqrt{n}} r^{-0.496 \ldots} d r=C_{2} n^{0.252 \ldots}
$$

Allocation to Gaussian random polynomial

- For $\zeta_{1}, \ldots, \zeta_{n}$ independent standard complex Gaussians,

$$
p(z)=\sum_{k=0}^{n} \zeta_{k} \frac{\sqrt{n(n-1) \cdots(n-k+1)}}{\sqrt{k!}} z^{k} .
$$

- Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ be the roots of p.
- Let $\mathcal{L} \subset \mathbb{S}_{n}^{2}$ correspond to $\lambda_{1}, \ldots, \lambda_{n}$ via stereographic projection.
- Let $\psi: \mathbb{S}_{n}^{2} \rightarrow \mathcal{L}$ define gravitational allocation to \mathcal{L}.

Proposition (H.-Peres-Zhai)

For any fixed $x \in \mathbb{S}_{n}^{2}$,

$$
\mathbb{E}[|x-\psi(x)|]=\Theta(1)
$$

Allocation to Gaussian random polynomial

Gaussian random polynomial
Uniform points

Allocation to Gaussian random polynomial (cont.)

The average distance travelled can be expressed in terms of the average force:

$$
\begin{aligned}
& \int_{\mathbb{S}_{n}^{2}} \int_{0}^{\tau_{x}}\left|F\left(Y_{x}(t)\right)\right| d t d \lambda_{n}(x)=\frac{1}{2 \pi} \int_{\mathbb{S}_{n}^{2}}|F(x)| d \lambda_{n}(x) \\
& \mathbb{E}[|x-\psi(x)|] \leq \frac{1}{2 \pi} \mathbb{E}|F(x)|
\end{aligned}
$$

We express the force in terms of the coefficients of our Gaussian random polynomial:

$$
F(x)=\sqrt{\frac{\pi}{n}} \sum_{k=1}^{n} \bar{\lambda}_{k}=\sqrt{\frac{\pi}{n}} \cdot \frac{\bar{\zeta}_{1} \cdot \sqrt{n}}{\bar{\zeta}_{0} \cdot 1}=\sqrt{\pi} \cdot \frac{\bar{\zeta}_{1}}{\bar{\zeta}_{0}}
$$

Proof main theorem

Goal: $\quad \mathbb{E}[|\psi(x)-x|] \leq C \sqrt{\log n}$.

Force bound

For $V \subset \mathbb{S}_{n}^{2}$ let $F(y \mid V)$ denote the force exterted by points $z \in \mathcal{L} \cap V$.

Force bound

For $V \subset \mathbb{S}_{n}^{2}$ let $F(y \mid V)$ denote the force exterted by points $z \in \mathcal{L} \cap V$.

For $k \in\left\{1,2, \ldots,\left\lfloor\frac{1}{10} \sqrt{n}\right\rfloor\right\}$ and $\lambda(V)=1$,

$$
\begin{aligned}
& \operatorname{Var}[F(y \mid V)]=\Theta\left(k^{-2}\right) \\
& \operatorname{Var}\left[F\left(y \mid A_{k}\right)\right]=\Theta\left(k^{-1}\right) \\
& \operatorname{Var}\left[F\left(y \mid \cup_{k=1}^{\sqrt{n} / 10} A_{k}\right)\right]=\Theta(\log n)
\end{aligned}
$$

Force bound

For $V \subset \mathbb{S}_{n}^{2}$ let $F(y \mid V)$ denote the force exterted by points $z \in \mathcal{L} \cap V$.

For $k \in\left\{1,2, \ldots,\left\lfloor\frac{1}{10} \sqrt{n}\right\rfloor\right\}$ and $\lambda(V)=1$,

$$
\begin{aligned}
& \operatorname{Var}[F(y \mid V)]=\Theta\left(k^{-2}\right) \\
& \operatorname{Var}\left[F\left(y \mid A_{k}\right)\right]=\Theta\left(k^{-1}\right) \\
& \operatorname{Var}\left[F\left(y \mid \cup_{k=1}^{\sqrt{n} / 10} A_{k}\right)\right]=\Theta(\log n)
\end{aligned}
$$

Force bound

For $V \subset \mathbb{S}_{n}^{2}$ let $F(y \mid V)$ denote the force exterted by points $z \in \mathcal{L} \cap V$.

For $k \in\left\{1,2, \ldots,\left\lfloor\frac{1}{10} \sqrt{n}\right\rfloor\right\}$ and $\lambda(V)=1$,

$$
\begin{aligned}
& \operatorname{Var}[F(y \mid V)]=\Theta\left(k^{-2}\right) \\
& \operatorname{Var}\left[F\left(y \mid A_{k}\right)\right]=\Theta\left(k^{-1}\right) \\
& \operatorname{Var}\left[F\left(y \mid \cup_{k=1}^{\sqrt{n} / 10} A_{k}\right)\right]=\Theta(\log n)
\end{aligned}
$$

Heuristic proof main theorem

- Recall: $\left|F\left(y ; r_{n}\right)\right|=O\left(1 / r_{n}\right)$ with high probability uniformly in y.
- $r_{n}=1 / \sqrt{\log n}$.
- $F\left(y ; r_{n}\right)$ is the force at y exerted by points $z \in \mathcal{L}$ satisfying $|y-z|>r_{n}$.
- The point x travels until the force from nearby particles dominates $F\left(Y_{x}(t) ; r_{n}\right)$, i.e., at most until $\left|Y_{x}(t)-z\right|=c r_{n}$ for some $z \in \mathcal{L}$ and $c \ll 1$ constant.
- Therefore $|\psi(x)-x|=O\left(1 /\left(c r_{n}\right)\right)=O(\sqrt{\log n})$ with high probability.

Proof idea main theorem

Note that since

$$
\psi(x)=Y_{x}\left(\tau_{x}\right)=\int_{0}^{\tau_{x}} F\left(Y_{x}(t)\right) d t+x
$$

it is sufficient to bound the following to bound $|\psi(x)-x|$ from above
(a) τ_{x},
(b) $\left|F\left(Y_{x}(t)\right)\right|$ along $\left(Y_{x}(t)\right)_{t \in\left[0, \tau_{x}\right]}$.

Proof idea main theorem

Note that since

$$
\psi(x)=Y_{x}\left(\tau_{x}\right)=\int_{0}^{\tau_{x}} F\left(Y_{x}(t)\right) d t+x
$$

it is sufficient to bound the following to bound $|\psi(x)-x|$ from above
(a) τ_{x},
(b) $\left|F\left(Y_{x}(t)\right)\right|$ along $\left(Y_{x}(t)\right)_{t \in\left[0, \tau_{x}\right]}$.

We show:
(a) $\mathbb{P}\left[\tau_{x}>t\right]=e^{-2 \pi t}$ (see next slide).
(b) By the force bound, if $|F(y)| \gg \sqrt{\log n}$, then y will be swallowed by a point at distance $O(1 / \sqrt{\log n})$ with high probability.

Liouville's theorem gives the probability distribution of τ_{x}

Liouville's Theorem: For M an oriented 2-dimensional Riemannian manifold with volume form $d \alpha$, a smooth vector field F on M, Φ_{t} the flow induced by F, and Ω an open set with compact closure,

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{Vol}_{\alpha}\left(\Phi_{t}(\Omega)\right)=\int_{\Omega} \operatorname{div}(F) d \alpha
$$

By the following lemma, $\mathbb{P}\left[\tau_{x}>t\right]=e^{-2 \pi t}$.

Lemma

For $z \in \mathcal{L}$ and $t \geq 0$, define

$$
E_{t}=\left\{x \in B(z): \tau_{x}>t\right\}, \quad V_{t}=\lambda\left(E_{t}\right)
$$

Then $V_{t}=e^{-2 \pi t} V_{0}$.
The lemma is proved by applying Liouville's theorem with $F=-\nabla_{s} U$ and $\Omega=E_{t-s}$:

$$
\frac{d}{d s} V_{t-s}=-\int_{E_{t-s}} \Delta_{s} U d \lambda=\int_{E_{t-s}} 2 \pi d \lambda=2 \pi V_{t-s} .
$$

Conjectures for optimal squared matching distance

- Let \mathcal{A} (resp. \mathcal{B}) be a collection of n points chosen uniformly and independently at random from the d-dimensional torus \mathbb{T}^{d} of area n. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ denote the matching which minimizes the cost $\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}$.

Conjectures for optimal squared matching distance

- Let \mathcal{A} (resp. \mathcal{B}) be a collection of n points chosen uniformly and independently at random from the d-dimensional torus \mathbb{T}^{d} of area n. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ denote the matching which minimizes the cost $\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}$.
- Caracciolo-Lubicello-Parisi-Sicuro'14 conjecture that for constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and ζ_{d} the Epstein ζ function,

$$
\mathbb{E}\left[\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}\right] \sim \begin{cases}\frac{1}{6} n+c_{1} & \text { if } d=1 \tag{3}\\ \frac{1}{2 \pi} \log n+c_{2} & \text { if } d=2 \\ c_{3}+\frac{\zeta_{d}(1)}{2 \pi^{2}} n^{-\frac{d-2}{2}} & \text { if } d \geq 3\end{cases}
$$

Conjectures for optimal squared matching distance

- Let \mathcal{A} (resp. \mathcal{B}) be a collection of n points chosen uniformly and independently at random from the d-dimensional torus \mathbb{T}^{d} of area n. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ denote the matching which minimizes the cost $\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}$.
- Caracciolo-Lubicello-Parisi-Sicuro'14 conjecture that for constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and ζ_{d} the Epstein ζ function,

$$
\mathbb{E}\left[\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}\right] \sim \begin{cases}\frac{1}{6} n+c_{1} & \text { if } d=1 \tag{3}\\ \frac{1}{2 \pi} \log n+c_{2} & \text { if } d=2 \\ c_{3}+\frac{\zeta_{d}(1)}{2 \pi^{2}} n^{-\frac{d-2}{2}} & \text { if } d \geq 3\end{cases}
$$

- Earlier works prove rigorously that the ratio of the left and right side of (3) is $\Theta(1)$.

Conjectures for optimal squared matching distance

- Let \mathcal{A} (resp. \mathcal{B}) be a collection of n points chosen uniformly and independently at random from the d-dimensional torus \mathbb{T}^{d} of area n. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ denote the matching which minimizes the cost $\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}$.
- Caracciolo-Lubicello-Parisi-Sicuro'14 conjecture that for constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and ζ_{d} the Epstein ζ function,

$$
\mathbb{E}\left[\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}\right] \sim \begin{cases}\frac{1}{6} n+c_{1} & \text { if } d=1 \tag{3}\\ \frac{1}{2 \pi} \log n+c_{2} & \text { if } d=2 \\ c_{3}+\frac{\zeta_{d}(1)}{2 \pi^{2}} n^{-\frac{d-2}{2}} & \text { if } d \geq 3\end{cases}
$$

- Earlier works prove rigorously that the ratio of the left and right side of (3) is $\Theta(1)$.
- For a regularized version of the considered matching problem, the optimal solution is given by the Monge-Ampere equation. The derivation of (3) is based on a linearization of this equation, which leads to the Poisson equation.

Conjectures for optimal squared matching distance

- Let \mathcal{A} (resp. \mathcal{B}) be a collection of n points chosen uniformly and independently at random from the d-dimensional torus \mathbb{T}^{d} of area n. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ denote the matching which minimizes the cost $\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}$.
- Caracciolo-Lubicello-Parisi-Sicuro'14 conjecture that for constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and ζ_{d} the Epstein ζ function,

$$
\mathbb{E}\left[\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}\right] \sim \begin{cases}\frac{1}{6} n+c_{1} & \text { if } d=1 \tag{3}\\ \frac{1}{2 \pi} \log n+c_{2} & \text { if } d=2 \\ c_{3}+\frac{\zeta_{d}(1)}{2 \pi^{2}} n^{-\frac{d-2}{2}} & \text { if } d \geq 3\end{cases}
$$

- Earlier works prove rigorously that the ratio of the left and right side of (3) is $\Theta(1)$.
- For a regularized version of the considered matching problem, the optimal solution is given by the Monge-Ampere equation. The derivation of (3) is based on a linearization of this equation, which leads to the Poisson equation.
- Numerical simulations suggest that with cost function $|\varphi(a)-a|^{p}, p \geq 1$, the exponent in the correction term for $d \geq 3$ is always equal to $\frac{d-2}{2}$.

Conjectures for optimal squared matching distance

- Let \mathcal{A} (resp. \mathcal{B}) be a collection of n points chosen uniformly and independently at random from the d-dimensional torus \mathbb{T}^{d} of area n. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ denote the matching which minimizes the cost $\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}$.
- Caracciolo-Lubicello-Parisi-Sicuro'14 conjecture that for constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and ζ_{d} the Epstein ζ function,

$$
\mathbb{E}\left[\frac{1}{n} \sum_{a \in \mathcal{A}}|\varphi(a)-a|^{2}\right] \sim \begin{cases}\frac{1}{6} n+c_{1} & \text { if } d=1 \tag{3}\\ \frac{1}{2 \pi} \log n+c_{2} & \text { if } d=2 \\ c_{3}+\frac{\zeta_{d}(1)}{2 \pi^{2}} n^{-\frac{d-2}{2}} & \text { if } d \geq 3\end{cases}
$$

- Earlier works prove rigorously that the ratio of the left and right side of (3) is $\Theta(1)$.
- For a regularized version of the considered matching problem, the optimal solution is given by the Monge-Ampere equation. The derivation of (3) is based on a linearization of this equation, which leads to the Poisson equation.
- Numerical simulations suggest that with cost function $|\varphi(a)-a|^{p}, p \geq 1$, the exponent in the correction term for $d \geq 3$ is always equal to $\frac{d-2}{2}$.
- Ambrosio-Stra-Trevisan'16 established the leading constant $\frac{1}{2 \pi}$ for $d=2$ rigorously. Their analysis suggests that gravitaitonal allocation is asymptotically optimal for the cost function $|\varphi(a)-a|^{2}$. \qquad

Allocation of hyperbolic plane to zeros of Gaussian hyperbolic functions

Intensity of zeros $=1$ (simulation by J. Ding and R. Peled)

Allocation of hyperbolic plane to zeros of Gaussian hyperbolic functions

Intensity of zeros $=3$ (simulation by J. Ding and R. Peled)

Allocation of hyperbolic plane to zeros of Gaussian hyperbolic functions

Intensity of zeros $=10$ (simulation by J. Ding and R. Peled)

Open problem: electrostatic matching

- Let \mathcal{A} (resp. \mathcal{B}) be a collection of n particles on \mathbb{S}_{n}^{2} with negative (resp. positive) charge, sampled independently and uniformly at random.
- Assume particles of different (resp. similar) charge attract (resp. repulse) each other.
- Does this define a matching of \mathcal{A} and \mathcal{B} a.s.? What is the expected average distance between matched particles?

Thanks!

