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Stable matching Optimal matching

Matching of n blue points and n red points sampled uniformly and
independently from the torus.
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Fair allocations

@ For n € N let S2 C R? be the sphere centered at the origin with
radius chosen such that the total surface area A(S2) equals n.

e For any set £ C S2 consisting of n points called stars, we say that a
measurable function v : S2 — £ U {oo} is a fair allocation if it
satisfies the following:

A~ (o0)) =0, NypH2) =1, vzeL (1)

@ In other words, a fair allocation is a way to divide S% into n cells of
measure 1 (up to a set of measure 0), with each cell associated to a
distinct star in L.
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Allocation rule

@ Let £ C S2 be a random collection of n points.
@ An allocation rule is a measurable mapping £ — 1 such that
e 1 is a fair allocation of A to £ a.s., and
o L — 1, is rotation-equivariant, i.e., P-a.s., for any x € S% and
any rotation map ¢, we have ¥4)(¢(x)) = ¢(1c(x)).
e We are interested in minimizing |12 (x) — x| for x € S2.
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Gravitational allocation

Potential and field: ~ U(x) = log|x—z|,  F(x) =—-VsU(x),
zel
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Gravitational allocation

Potential and field:

Flow lines:
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U(x) = Z log |x — z|, F(x) = =VsU(x),
zeLl
dYy
(1) = FOG(E), Y0 =x telon]
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Gravitational allocation

Potential and field:

Flow lines:

Basin of attraction:

Ulx) =) loglx—z|,  F(x)=-VsU(x),

zel

dYy
(0 = F(V (1),

B(z) = {xec$?: IiTm Ye(t) =2z}, z€ L,
tT7x

Y«(0) =x, te]0,7,
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Gravitational allocation

Potential and field:

Flow lines:

Basin of attraction:

Terminal point:

Ulx) =) loglx—z|,  F(x)=-VsU(x),

zel
d;;X(t):F(YX(t)), Yi(0) = x, te[0,n],

B(z) = {xec$?: IiTm Yi(t) =2z}, z€ L,
tT7x

e :{z if x € B(z) for z € L,
00 if x € U,cr B(2).
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Gravitational potential
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Examples

One point on the north pole, surrounded by seven other points
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One point on the north pole, surrounded by seven other points
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Examples

One point on the south pole and seven points in the northern hemisphere
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One point on the south pole and seven points in the northern hemisphere
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Why is the allocation fair?

Divergence theorem, assuming B(zp) has a piecewise smooth boundary for
7o € L:

AsUdA = —/ F(x)-nds. 2)
B(z0) 0B(z)
Observe that if A\(S?) = A, then
Asloglx—z| =26, - 2% = AgU= 225—2”—”
slog|x —z| =27 y sU=2x y

zel
Since F(x)-n =0 for x € 9B(zy), we get by insertion into (2) that

2m — 2iAn)\(B(zo))

Thus A(B(z0)) = 2 as claimed.
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Main result

Let £ be a collection of n > 2 points chosen uniformly at random from S%.

Theorem (H.-Peres.-Zhai)

For any p > 0 there is a constant C, > 0 such that for any x S?

P [|1/1(x) — x| > ry/log n] < Gy 7
In particular, there is a universal constant C > 0 such that for any x € S2,

E[|¢(x) — x|]] < C/log n.
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n=15
Simulation based on code written by Manjunath Krishnapur
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n =200

N. Holden (MSR) Gravitational allocation 11 /27






Earlier results on fair allocations

Let Y = diam(B(¢(x))) denote the
diameter of the basin containing x.

In the following settings P[Y > R] decays
superpolynomially in R:

@ L C C the zero set of a Gaussian
Entire Function f; potential
U = log|f| — |2[*/2
(Nazarov-Sodin-Volberg'07)

@ LCRY d>3, unit intensity Poisson
point process; gravitational field F
(Chatterjee-Peled-Peres-Romik'10)

Gravitational allocation to the zero set of

Remark: Gravitational allocation to a unit the Gaussian Entire Function

intensity Poisson point process in R? is not
well-defined.
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Earlier results on fair allocations

Let Y = diam(B(¢(x))) denote the
diameter of the basin containing x.

In the following settings P[Y > R] decays
superpolynomially in R:

@ L C C the zero set of a Gaussian
Entire Function f; potential
U=log|f| - |z*/2
(Nazarov-Sodin-Volberg'07)

@ LCRY d>3, unit intensity Poisson
point process; gravitational field F
(Chatterjee-Peled-Peres-Romik'10)

Remark: Gravitational allocation to a unit

intensity Poisson point process in R? is not
well-defined. Stable marriage allocation

(simulation by A. Holroyd)
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Application: matchings

o Let A={a1,...,an} and B = {b1,..., bp} be sampled uniformly and
independently at random from S2 for n > 2.

@ A matching of A and B is a bijective function ¢ : A — B.

Corollary (H.-Peres.-Zhai)

We can use gravitational allocation to define a matching, such that for a
universal constant C > 0,

n
E[X] < Cy/logn, X := %Z le(ai) — ail-
i=1

N. Holden (MSR) Gravitational allocation 13 /27



Application: matchings

o Let A={a1,...,an} and B = {by,..., bp} be sampled uniformly and
independently at random from S2 for n > 2.
@ A matching of A and B is a bijective function ¢ : A — B.

Corollary (H.-Peres.-Zhai)

We can use gravitational allocation to define a matching, such that for a
universal constant C > 0,

10
< = — i) — ajl-
E[X] < Cylogn,  X:=— ;:1 lp(ai) — ail

Ajtai-Komlés-Tusnady’84: There exists a universal constant C > 1 such
that for the optimal matching ¢ of 2n points in [0, 1/n]?,

Ii_)m P [C_I\/IogngX < C\/Iogn} =1
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Proof Matching Corollary

The points of B define a gravitational potential.
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Proof Matching Corollary

Pick the points of .4 one by one.
By the main theorem, E[|¢(a1) — a1]] < C+y/logn.
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Proof Matching Corollary

Note that the remaining points are uniformly distributed.
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Proof Matching Corollary

By the main theorem, E[|p(a2) — a2]] < Cy/ Ll\/log(n —1).
n J—
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Proof Matching Corollary

82

n

The remaining points are again uniformly distributed.
Repeat the procedure until all points are matched.
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Proof Matching Corollary

@ Combining the above bounds, we get
1 n
X == —
p kE—l p(ak) — al,

E[X] < gz\/zvl—l—logk < Ci1+/log n,
k=1

as claimed.
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Proof Matching Corollary

@ Combining the above bounds, we get
1 n
X == —
p kE—l p(ak) — al,

E[X] < gz\/zvl—l—logk < Ci1+/log n,
k=1

as claimed.

@ The matching algorithm is online: ¢(ax) depends only on ay, ..., ax
and by,..., b,
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Greedy/stable matching

o Let A={a1,...,an} and B = {b1,..., bp} be sampled uniformly and
independently at random from S2 for n € N.

@ Define a matching ¢ : A — B by iteratively matching closest pairs.
o Define Y = |p(a1) — a1|. What is E[Y]?
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Greedy/stable matching

o Let A={a1,...,an} and B = {b1,..., bp} be sampled uniformly and
independently at random from S2 for n € N.

@ Define a matching ¢ : A — B by iteratively matching closest pairs.
o Define Y = |p(a1) — a1|. What is E[Y]?

@ Holroyd-Pemantle-Peres-Schramm’09: For A and B Poisson point
processes in R? and Y = |p(a) — al for a typical point a € A,

IP’[\A/ >r] < Cyr— 049
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Greedy/stable matching

o Let A={a1,...,an} and B = {b1,..., bp} be sampled uniformly and
independently at random from S2 for n € N.

@ Define a matching ¢ : A — B by iteratively matching closest pairs.
o Define Y = |p(a1) — a1|. What is E[Y]?

@ Holroyd-Pemantle-Peres-Schramm’09: For A and B Poisson point
processes in R? and Y = |p(a) — al for a typical point a € A,

IP’[\A/ >r] < Cyr— 049

@ Transferring to S,z,,

NG
E[Y] < Cl/ p049... gy — (0252
0
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Allocation to Gaussian random polynomial

For (3, ...,(, independent standard complex Gaussians,

n \/n(n—l)---(n—k—l—l) B
(2) = q z".
P g%k N

Let A\1,..., A, € C be the roots of p.

Let £ C S2 correspond to Aj,...,\, via stereographic projection.

Let ¢ : S2 — L define gravitational allocation to L.

Proposition (H.-Peres-Zhai)

For any fixed x € S,z,,

E[|x —¢(x)[] = ©(1).

N. Holden (MSR) Gravitational allocation 16 / 27



Allocation to Gaussian random polynomial

Gaussian random polynomial Uniform points
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Allocation to Gaussian random polynomial (cont.)

The average distance travelled can be expressed in terms of the average

force:
// (2))| dt dAn(x /|F )| dAn(x =
S2

E[lx —¢(x)I] < EE!F(X)!-

We express the force in terms of the coefficients of our Gaussian random

polynomial:
_ EZ" T _ G- Cl
Fl = \[nkzl M= n Co 1 =VT 2

0
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Proof main theorem

N. Holden (MSR)

Goal:

B(z
z (:)¢(x) el

- Ya(t)

E[|¢(x) — x]] < Cy/log n.

Gravitational allocation




Force bound

For V C S2 let F(y| V) denote the force
exterted by points z€ LN V.
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For V C S2 let F(y| V) denote the force
exterted by points z€ LN V.

For k € {1,2,...,|&+/n]} and A(V) =1,

Var[F(y | V)] = ©(k™2),
Var[F(y | A)] = ©(k™Y),
VarlF(y | UYZ1" Ac)] = ©(log n).
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Heuristic proof main theorem

e Recall: |F(y; )| = O(1/r,) with high probability uniformly in y.
o r,=1/\/logn.
o F(y;ry) is the force at y exerted by points z € L satisfying |y — z| > r,.
@ The point x travels until the force from nearby particles dominates
F(Yx(t); rn), ie., at most until |Y,(t) — z| = cr, for some z € L and
¢ < 1 constant.

@ Therefore |1)(x) — x| = O(1/(crs)) = O(v/log n) with high probability.

-
21 @ 252,.
/,,* O(l/w/logn)/
————— "
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Proof idea main theorem

Note that since
B(x) = Ya(r) = / " F(Yi()) dt + x,
0

it is sufficient to bound the following to bound |¢)(x) — x| from above
(@) ™
(b) [F(Yx(t))l along (Yi(t))eeo,rn-
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Proof idea main theorem

Note that since
B(x) = Ya(r) = / " F(Yi()) dt + x,
0

it is sufficient to bound the following to bound |¢)(x) — x| from above
(@) ™
(b) [F(Yx(t))l along (Yi(t))eeo,rn-

We show:
(a) P[rx > t] = e 27t (see next slide).

(b) By the force bound, if |F(y)| > +/log n, then y will be swallowed by a
point at distance O(1/v/log n) with high probability.

N. Holden (MSR) Gravitational allocation 22 /27



Liouville's theorem gives the probability distribution of 7,

Liouville’s Theorem: For M an oriented 2-dimensional Riemannian manifold with volume
form da, a smooth vector field F on M, &, the flow induced by F, and Q an open set
with compact closure,

d .
pm » Vola ($:(Q)) = /lev(F) do.

—27t

By the following lemma, Pt > t] = e

Forz € L and t > 0, define E, g
E: = {x € B(z) : 7« > t}, Vi = A(Er).
Then Vi = e *™ V.

The lemma is proved by applying Liouville's
theorem with F = —VsU and Q = E;_s:

Ay = ASUd/\:/ 2 d\ = 2 Vi_s. B(z)
ds Ee_s E

t—s
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Conjectures for optimal squared matching distance

@ Let A (resp. B) be a collection of n points chosen uniformly and independently at
random from the d-dimensional torus T¢ of area n. Let ¢ : A — B denote the
matching which minimizes the cost 13>, |¢(a) — af*.

N. Holden (MSR) Gravitational allocation 24 /27



Conjectures for optimal squared matching distance

@ Let A (resp. B) be a collection of n points chosen uniformly and independently at
random from the d-dimensional torus T¢ of area n. Let ¢ : A — B denote the
matching which minimizes the cost 13>, |¢(a) — af*.

@ Caracciolo-Lubicello-Parisi-Sicuro'14 conjecture that for constants ¢, ¢, c3 € R
and (4 the Epstein ¢ function,

1 inta ifd=1,
E [n > le(a) - a|2] ~ < Llogn+ o if d =2, (3)
2eA a+$9n % ifd>3.
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Conjectures for optimal squared matching distance

@ Let A (resp. B) be a collection of n points chosen uniformly and independently at
random from the d-dimensional torus T¢ of area n. Let ¢ : A — B denote the
matching which minimizes the cost 13>, |¢(a) — af*.

@ Caracciolo-Lubicello-Parisi-Sicuro'14 conjecture that for constants ¢, ¢, c3 € R
and (4 the Epstein ¢ function,

E [1 > le(a) ol

acA

%n +a ifd= 1,

]N %Iogn—f—czd2 if d =2, (3)
a+$Bn% ifd>3.

@ Earlier works prove rigorously that the ratio of the left and right side of (3) is ©(1).

@ For a regularized version of the considered matching problem, the optimal solution
is given by the Monge-Ampere equation. The derivation of (3) is based on a
linearization of this equation, which leads to the Poisson equation.

N. Holden (MSR) Gravitational allocation 24 /27



Conjectures for optimal squared matching distance

@ Let A (resp. B) be a collection of n points chosen uniformly and independently at
random from the d-dimensional torus T¢ of area n. Let ¢ : A — B denote the
matching which minimizes the cost 13>, |¢(a) — af*.

@ Caracciolo-Lubicello-Parisi-Sicuro'14 conjecture that for constants ¢, ¢, c3 € R
and (4 the Epstein ¢ function,

E [1 > le(a) ol

acA

%n +a ifd= 1,
]N = logn+c if d =2, (3)
—2
o+ @ ifd>3.
@ Earlier works prove rigorously that the ratio of the left and right side of (3) is ©(1).
@ For a regularized version of the considered matching problem, the optimal solution
is given by the Monge-Ampere equation. The derivation of (3) is based on a
linearization of this equation, which leads to the Poisson equation.
@ Numerical simulations suggest that with cost function |p(a) — al?, p > 1, the

exponent in the correction term for d > 3 is always equal to %.
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Conjectures for optimal squared matching distance

@ Let A (resp. B) be a collection of n points chosen uniformly and independently at
random from the d-dimensional torus T¢ of area n. Let ¢ : A — B denote the
matching which minimizes the cost 13>, |¢(a) — af*.

@ Caracciolo-Lubicello-Parisi-Sicuro'14 conjecture that for constants ¢, ¢, c3 € R
and (4 the Epstein ¢ function,

E [1 > le(a) ol

acA

%n +a ifd= ].7
]N %Iogn—f—czd2 if d =2, (3)
a+¥Bn%  ifd>3.
@ Earlier works prove rigorously that the ratio of the left and right side of (3) is ©(1).
@ For a regularized version of the considered matching problem, the optimal solution
is given by the Monge-Ampere equation. The derivation of (3) is based on a
linearization of this equation, which leads to the Poisson equation.
@ Numerical simulations suggest that with cost function |p(a) — al?, p > 1, the
exponent in the correction term for d > 3 is always equal to %.
@ Ambrosio-Stra-Trevisan'16 established the leading constant i ford =2
rigorously. Their analysis suggests that gravitaitonal allocation is asymptotically
optimal for the cost function |p(a) — a|?.
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Allocation of hyperbolic plane to zeros of Gaussian
hyperbolic functions

Intensity of zeros = 1 (simulation by J. Ding and R. Peled)
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Allocation of hyperbolic plane to zeros of Gaussian
hyperbolic functions

Intensity of zeros = 3 (simulation by J. Ding and R. Peled)
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Allocation of hyperbolic plane to zeros of Gaussian
hyperbolic functions

Intensity of zeros = 10 (simulation by J. Ding and R. Peled)
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Open problem: electrostatic matching

o Let A (resp. B) be a collection of n particles on S2 with negative
(resp. positive) charge, sampled independently and uniformly at
random.

@ Assume particles of different (resp. similar) charge attract (resp.
repulse) each other.

@ Does this define a matching of A and B a.s.? What is the expected
average distance between matched particles?
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Thanks!
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