Prof. Ch. Schwab
L. Herrmann, J. Zech

Numerical Analysis of High-Dimensional Problems

Exercise 1

Problem 1.1 inf-sup condition in L^{p}

Let $q \in(1, \infty)$ and $1 / p+1 / q=1$. In the following we consider the one dimensional Sobolev spaces $W_{0}^{1, r}=W_{0}^{1, r}([0,1]), r \in\{p, q\}$, on the interval $[0,1]$.
(1.1a) Prove that

$$
\begin{equation*}
\inf _{0 \neq u \in W_{0}^{1, p}} \sup _{0 \neq v \in W_{0}^{1, q}} \frac{\int_{0}^{1} u^{\prime} v^{\prime} \mathrm{d} x}{\left\|u^{\prime}\right\|_{L^{p}}\left\|v^{\prime}\right\|_{L^{q}}}=1 . \tag{1.1.1}
\end{equation*}
$$

Theorem (Fredholm alternative). Let T be a compact linear operator on a normed space \mathcal{X} into itself. Then either (i) the homogeneous equation

$$
u-T u=0
$$

has a nontrivial solution $u \in \mathcal{X}$ or (ii) for each $v \in \mathcal{X}$ the equation

$$
u-T u=v
$$

has a uniquely determined solution $u \in \mathcal{X}$. Furthermore, in case (ii), the operator $(\operatorname{Id}-T)^{-1}$ whose existence is asserted there is also bounded.

For a proof see Theorem 5.3 in "Elliptic Partial Differential Equations of Second Order", Gilbarg and Trudinger, Springer.
(1.1b) Use subproblem (1.1a) to show that

$$
\begin{equation*}
\inf _{0 \neq u \in W_{0}^{1, p}} \sup _{0 \neq v \in W_{0}^{1, q}} \frac{\int_{0}^{1} u^{\prime} v^{\prime}+u v \mathrm{~d} x}{\left\|u^{\prime}\right\|_{L^{p}}\left\|v^{\prime}\right\|_{L^{q}}}>0 . \tag{1.1.2}
\end{equation*}
$$

Hint: Use Thm. 1.36, the given Theorem ("Fredholm alternative") and the fact that $W_{0}^{1, q}$ is reflexive.

Problem 1.2 Semilinear Elliptic PDE

Consider the semilinear elliptic PDE

$$
\begin{equation*}
-q^{\prime \prime}+q^{3}=f \quad \text { in } D=(0,1) \text { with } q(0)=q(1)=0 . \tag{1.2.1}
\end{equation*}
$$

Definition. We call \mathcal{R} Fréchet differentiable at $q \in \mathcal{X}$ if there exists a bounded, linear operator $A: \mathcal{X} \rightarrow \mathcal{Y}^{\prime}$ such that

$$
\lim _{\|w\|_{\mathcal{X}} \rightarrow 0} \frac{\|\mathcal{R}(q+w)-\mathcal{R}(q)-A w\|_{\mathcal{Y}^{\prime}}}{\|w\|_{\mathcal{X}}}=0
$$

and A is the Fréchet derivative of \mathcal{R} at q. We also write $A=D \mathcal{R}(q)$.
(1.2a) Let $\mathcal{R}(q)=-q^{\prime \prime}+q^{3}-f, \mathcal{X}=H_{0}^{1}(D)$ and $\mathcal{Y}=H_{0}^{1}(D)$. Prove that $\mathcal{R}: \mathcal{X} \rightarrow \mathcal{Y}^{\prime}$ is Fréchet differentiable at $q \in \mathcal{X}$ and write down an expression for the Fréchet derivative $D \mathcal{R}(q)$.

Definition. A functional $I: \mathcal{X} \rightarrow \mathbb{R}$ on a Banach space \mathcal{X} is called coercive iffor every sequence $\left(u_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{X}$,

$$
\left\|u_{k}\right\|_{\mathcal{X}} \rightarrow \infty \text { as } k \rightarrow+\infty \text { implies that } I\left(u_{k}\right) \rightarrow+\infty \text { as } k \rightarrow+\infty .
$$

For the next Proposition see Thms. 1.5.6, 1.5.8 in 'Semilinear Elliptic PDEs for Beginners' by M. Badiale and E. Serra, Springer - London, 2011.

Proposition. Let \mathcal{X} be a reflexive Banach space and let $I: \mathcal{X} \rightarrow \mathbb{R}$ be continuous, strictly convex and coercive. Then I has a unique minimum in \mathcal{X}.
(1.2b) Prove that for all $f \in \mathcal{Y}^{\prime}$, there exists a unique solution $q \in \mathcal{X}$ such that $\mathcal{R}(q)=0$ in \mathcal{Y}^{\prime} by using critical points of a functional $I: \mathcal{X} \rightarrow \mathbb{R}$ such that $D I=\mathcal{R}$.

Hint: Apply the above proposition.
(1.2c) Prove that for $f \in \mathcal{Y}^{\prime}$ such that $\|f\|_{\mathcal{Y}^{\prime}}$ is sufficiently small, there exists a locally unique solution $q \in \mathcal{X}$ such that $\mathcal{R}(q)=0$ in \mathcal{Y}^{\prime} by verifying the assumptions of Theorem 1.41 in the lecture notes.

Hint: Consider $w \in H_{0}^{1}(D)$, which uniquely solves $-w^{\prime \prime}=f$. Prove that the solution q lies in a neighborhood of w.

Problem 1.3 Sobolev embedding in one dimension

For $D=(0,1)$, show that the embedding $H^{1}(D) \subset C^{0, \frac{1}{2}}(\bar{D})$ is continuous.
Hint: You may assume that the continuous embedding $H^{1}(D) \subset C^{0}(\bar{D})$ is already established.

Published on September 28.
To be submitted on October 5.
Last modified on September 28, 2017

