Prof. Ch. Schwab L. Herrmann, J. Zech

Numerical Analysis of High-Dimensional Problems ETH Zürich D-MATH

Exercise 1

Problem 1.1 inf-sup condition in L^p

Let $q \in (1, \infty)$ and 1/p + 1/q = 1. In the following we consider the one dimensional Sobolev spaces $W_0^{1,r} = W_0^{1,r}([0,1]), r \in \{p,q\}$, on the interval [0,1].

(1.1a) Prove that

$$\inf_{0 \neq u \in W_0^{1,p}} \sup_{0 \neq v \in W_0^{1,q}} \frac{\int_0^1 u' v' \, \mathrm{d}x}{\|u'\|_{L^p} \|v'\|_{L^q}} = 1.$$
(1.1.1)

Theorem (Fredholm alternative). Let T be a compact linear operator on a normed space \mathcal{X} into itself. Then either (i) the homogeneous equation

$$u - Tu = 0$$

has a nontrivial solution $u \in \mathcal{X}$ or (ii) for each $v \in \mathcal{X}$ the equation

$$u - Tu = v$$

has a uniquely determined solution $u \in \mathcal{X}$. Furthermore, in case (ii), the operator $(\mathrm{Id} - T)^{-1}$ whose existence is asserted there is also bounded.

For a proof see Theorem 5.3 in "Elliptic Partial Differential Equations of Second Order", Gilbarg and Trudinger, Springer.

(1.1b) Use subproblem (1.1a) to show that

$$\inf_{0 \neq u \in W_0^{1,p}} \sup_{0 \neq v \in W_0^{1,q}} \frac{\int_0^1 u'v' + uv \, \mathrm{d}x}{\|u'\|_{L^p} \|v'\|_{L^q}} > 0.$$
(1.1.2)

HINT: Use Thm. 1.36, the given Theorem ("Fredholm alternative") and the fact that $W_0^{1,q}$ is reflexive.

Problem 1.2 Semilinear Elliptic PDE

Consider the semilinear elliptic PDE

$$-q'' + q^3 = f$$
 in $D = (0, 1)$ with $q(0) = q(1) = 0.$ (1.2.1)

Definition. We call \mathcal{R} Fréchet differentiable at $q \in \mathcal{X}$ if there exists a bounded, linear operator $A : \mathcal{X} \to \mathcal{Y}'$ such that

$$\lim_{\|w\|_{\mathcal{X}} \to 0} \frac{\|\mathcal{R}(q+w) - \mathcal{R}(q) - Aw\|_{\mathcal{Y}'}}{\|w\|_{\mathcal{X}}} = 0,$$

and A is the Fréchet derivative of \mathcal{R} at q. We also write $A = D\mathcal{R}(q)$.

(1.2a) Let $\mathcal{R}(q) = -q'' + q^3 - f$, $\mathcal{X} = H_0^1(D)$ and $\mathcal{Y} = H_0^1(D)$. Prove that $\mathcal{R} : \mathcal{X} \to \mathcal{Y}'$ is Fréchet differentiable at $q \in \mathcal{X}$ and write down an expression for the Fréchet derivative $D\mathcal{R}(q)$.

Definition. A functional $I : \mathcal{X} \to \mathbb{R}$ on a Banach space \mathcal{X} is called coercive if for every sequence $(u_k)_{k \in \mathbb{N}} \subset \mathcal{X}$,

$$||u_k||_{\mathcal{X}} \to \infty \text{ as } k \to +\infty \text{ implies that } I(u_k) \to +\infty \text{ as } k \to +\infty.$$

For the next Proposition see Thms. 1.5.6, 1.5.8 in 'Semilinear Elliptic PDEs for Beginners' by M. Badiale and E. Serra, Springer – London, 2011.

Proposition. Let \mathcal{X} be a reflexive Banach space and let $I : \mathcal{X} \to \mathbb{R}$ be continuous, strictly convex and coercive. Then I has a unique minimum in \mathcal{X} .

(1.2b) Prove that for all $f \in \mathcal{Y}'$, there exists a unique solution $q \in \mathcal{X}$ such that $\mathcal{R}(q) = 0$ in \mathcal{Y}' by using critical points of a functional $I : \mathcal{X} \to \mathbb{R}$ such that $DI = \mathcal{R}$.

Hint: Apply the above proposition.

(1.2c) Prove that for $f \in \mathcal{Y}'$ such that $||f||_{\mathcal{Y}'}$ is sufficiently small, there exists a locally unique solution $q \in \mathcal{X}$ such that $\mathcal{R}(q) = 0$ in \mathcal{Y}' by verifying the assumptions of Theorem 1.41 in the lecture notes.

HINT: Consider $w \in H_0^1(D)$, which uniquely solves -w'' = f. Prove that the solution q lies in a neighborhood of w.

Problem 1.3 Sobolev embedding in one dimension

For D = (0, 1), show that the embedding $H^1(D) \subset C^{0, \frac{1}{2}}(\overline{D})$ is continuous.

Hint: You may assume that the continuous embedding $H^1(D) \subset C^0(\overline{D})$ is already established.

Published on September 28.

To be submitted on October 5.

Last modified on September 28, 2017