Prof. Ch. Schwab L. Herrmann, J. Zech

Numerical Analysis of High-Dimensional Problems ETH Zürich D-MATH

Exercise 2

Problem 2.1 Continuous dependence on data

Let $D \subseteq \mathbb{R}^d$ be a bounded Lipschitz domain and let $a \in L^{\infty}(D, \mathbb{R})$ such that for two constants $0 < \underline{a} \leq \overline{a} < \infty$ it holds $\underline{a} \leq a \leq \overline{a}$ a.e. in D. Moreover let $f \in H^{-1}(D)$.

(2.1a) Denote by $u_{a,f} \in H_0^1(D)$ the unique solution of the variational problem

$$\int_{\mathcal{D}} a(x) \nabla u_{a,f}(x)^{\top} \nabla v(x) \, \mathrm{d}x = {}_{H^{-1}} \langle f, v \rangle_{H^1_0} \qquad \forall v \in H^1_0(\mathcal{D}).$$
(2.1.1)

Fix R > 0. Prove that $u_{a,f}$ is locally Lipschitz continuous as a function of $a \in L^{\infty}(D)$ and $f \in H^{-1}(D)$: there exists a constant C depending on <u>a</u> and R such that

$$\|u_{a,f} - u_{b,g}\|_{H^1_0(\mathcal{D})} \le C(\|a - b\|_{L^{\infty}(\mathcal{D})} + \|f - g\|_{H^{-1}(\mathcal{D})}),$$
(2.1.2)

whenever $||a - b||_{L^{\infty}(\mathbb{D})} \leq \underline{a}/2$ and $||g||_{H^{-1}} \leq R$.

(2.1b) Let now $d \leq 3$ and consider the nonlinear problem of finding $u_{a,f} \in H_0^1(D)$ such that

$$\int_{\mathcal{D}} a(x) \nabla u_{a,f}(x)^{\top} \nabla v(x) + u_{a,f}(x)^{3} v(x) \, \mathrm{d}x = {}_{H^{-1}} \langle f, v \rangle_{H^{1}_{0}} \qquad \forall v \in H^{1}_{0}(\mathcal{D}).$$
(2.1.3)

Show that there exists $\varepsilon > 0$ and a constant C depending on ε and \underline{a} such that for all $f, g \in H^{-1}(D)$ with $\|f\|_{H^{-1}}, \|g\|_{H^{-1}} \le \varepsilon$ and all $b \in L^{\infty}$ with $\|a - b\| \le \underline{a}/2$ it holds (2.1.2).

Problem 2.2 Linear Finite Elements for univariate elliptic equations

For given $f \in L^2(D)$, $u_1 \in C^1(\overline{D})$ and $u_2, u_3 \in C^0(\overline{D})$ consider the linear elliptic equation

$$-(u_1q')' + u_2q' + u_3q = f \text{ in D}, q = 0 \text{ on } \partial \mathbf{D},$$
(2.2.1)

where D = (a, b) and $\operatorname{essinf}_{x \in D} u_1(x) > 0$.

(2.2a) Derive the variational formulation of (2.2.1): reformulate the problem to find $q \in V := H_0^1(D)$ such that

$$a(u;q,v) = {}_{V^*}\langle f,v\rangle_V \quad \forall v \in V.$$
(2.2.2)

Give sufficient conditions on u_2 and u_3 such that (2.2.2) is uniquely solvable (use the Lax-Milgram lemma).

(2.2b) Consider the uniform mesh $x_i = a + hi$, i = 0, ..., N on D, where h = (b - a)/N, $N \in \mathbb{N}$. With $x_{-1} := a - h$, $x_{N+1} := b + h$, the *hat functions* are defined as

$$b_i(x) = \begin{cases} \frac{1}{h}(x - x_{i-1}) & \text{if } x \in [a, b] \text{ and } x \in (x_{i-1}, x_i), \\ \frac{1}{h}(-x + x_{i+1}) & \text{if } x \in [a, b] \text{ and } x \in (x_i, x_{i+1}), \\ 0 & \text{else,} \end{cases}$$

for i = 0, ..., N. Define the Finite Element (FE) space $\widetilde{V}_N := \operatorname{span}\{b_0, ..., b_N\} \subset H^1(D)$. Which functions lie in the space $V_N := \widetilde{V}_N \cap H^1_0(D)$? The variational formulation over V_N reads: find (the unique) $q_N \in V_N$ such that

$$a(u;q_N,v_N) = \langle f, v_N \rangle_{V^*,V}, \quad \forall v_N \in V_N.$$
(2.2.3)

Derive an equivalent matrix formulation $\mathbf{Aq}_N = \mathbf{F}$ of (2.2.3): here the vector $\mathbf{q}_N = (q_{N,i})_{i=0}^N \in \mathbb{R}^{N+1}$ is such that $q_N = \sum_{i=0}^N q_{N,i} b_i$. Give exact formulas for the entries of the "stiffness matrix" $\mathbf{A} \in \mathbb{R}^{N+1 \times N+1}$ and the "load vector" $\mathbf{F} \in \mathbb{R}^{N+1}$.

(2.2c) Implement a function stiff.m in Matlab which takes the functions $u = (u_1, u_2, u_3)$ and the vector $\mathbf{x} = (x_i)_{i=0}^N$ (representing the mesh) as input and returns A as output. Moreover implement load_vec.m which takes the functions f and the vector \mathbf{x} as input and returns the load vector \mathbf{F} . (If you prefer you can use another programming language to solve this exercise.)

(2.2d) Test your code with the data D = (0, 1), $u_1(x) = 1 + x$, $u_2(x) = x$, $u_3(x) = 2$ and $q(x) = x \cos(x\pi/2)$: Solve the FE system for $N = 2^j$, j = 4, ..., 12 and plot the error in the $H^1(D)$ and $L^2(D)$ norm. Which convergence rate do you observe?

(2.2e) Consider a parametric coefficient $u_1 = 2 + y \sin(2\pi x)$ for $y \in [-1, 1]$ and $u_2 = u_3 = 0$ as well as the right-hand side f(x) = 1. Write a function which takes as input N and y and returns the FEM solution $q_{N;y}$ (in the form of a vector containing its coefficients).

(2.2f) Now we want to approximate the Bochner integral $\int_{-1}^{1} q_{N;y} dy \in V_N$ with a Gauss rule: Use the given MATLAB function gauleg.m to obtain the quadrature weights α_i and quadrature points $x_i \in [-1, 1]$ for i = 0, ..., M. Then approximate the integral via the quadrature formula

$$Q_M(q_N) := \sum_{i=0}^M \alpha_i q_{N;x_i}.$$
 (2.2.4)

For $N := 2^8$ plot the error decay of $\left\| \int_{-1}^1 u_{N;y} \, dy - Q_M(q_N) \right\|_{H^1(D)}$ for $M = 1, \dots, 15$. What asymptotic behaviour do you observe as $M \to \infty$?

HINT: As a reference value for $\int_{-1}^{1} u_{N;y} dy$ use $Q_{20}(q_N)$.

(2.2g) Consider the non-linear problem from the previous exercise sheet

$$\mathcal{R}(q) = -q'' + q^3 - f = 0. \tag{2.2.5}$$

The goal of this exercise is to approximate the FE solution q_N with a Newton iteration:

Algorithm 2.1 Newton Iteration.

Require: Absolute tolerance $\tau > 0$, max. number of iterations k_{max} given $q_0, s_0 \leftarrow 1, k \leftarrow 0$ while $||s_k||_{L^2(D)} > \tau$ and $k \le k_{max}$ do solve $D\mathcal{R}(q_k)s_{k+1} = \mathcal{R}(q_k)$ for s_{k+1} $q_{k+1} \leftarrow q_k - s_{k+1}$ $k \leftarrow k + 1$ end while return q_k

- 1. State the variational formulation of (2.2.3).
- 2. Implement a function FE_func_eval.m in Matlab that takes the coefficients of a FE function v_N , the mesh points $\{x_0, \ldots, x_N\}$, and a certain point $x \in D$ as input and returns the value of this FE function at x as output.
- 3. State the elements of the given Newton iteration in variational form with respect to the FE space V_N .
- 4. Implement the Newton iteration to approximate q_N .

Test your implementation with the function $q(x) = cx \cos(\pi x/2)$ for different values of c > 0. Comment on the number of steps needed in the Newton iteration for a certain chosen accuracy.

Published on October 12.

To be submitted on October 26. Last modified on October 20, 2017