Prof. Ch. Schwab
L. Herrmann, J. Zech

Numerical Analysis of High-Dimensional Problems

Exercise 2

Problem 2.1 Continuous dependence on data

Let $\mathrm{D} \subseteq \mathbb{R}^{d}$ be a bounded Lipschitz domain and let $a \in L^{\infty}(\mathrm{D}, \mathbb{R})$ such that for two constants $0<\underline{a} \leq \bar{a}<\infty$ it holds $\underline{a} \leq a \leq \bar{a}$ a.e. in D. Moreover let $f \in H^{-1}(\mathrm{D})$.
(2.1a) Denote by $u_{a, f} \in H_{0}^{1}(\mathrm{D})$ the unique solution of the variational problem

$$
\begin{equation*}
\int_{\mathrm{D}} a(x) \nabla u_{a, f}(x)^{\top} \nabla v(x) \mathrm{d} x={ }_{H^{-1}}\langle f, v\rangle_{H_{0}^{1}} \quad \forall v \in H_{0}^{1}(\mathrm{D}) . \tag{2.1.1}
\end{equation*}
$$

Fix $R>0$. Prove that $u_{a, f}$ is locally Lipschitz continuous as a function of $a \in L^{\infty}(\mathrm{D})$ and $f \in H^{-1}(\mathrm{D})$: there exists a constant C depending on \underline{a} and R such that

$$
\begin{equation*}
\left\|u_{a, f}-u_{b, g}\right\|_{H_{0}^{1}(\mathrm{D})} \leq C\left(\|a-b\|_{L^{\infty}(\mathrm{D})}+\|f-g\|_{H^{-1}(\mathrm{D})}\right) \tag{2.1.2}
\end{equation*}
$$

whenever $\|a-b\|_{L^{\infty}(\mathrm{D})} \leq \underline{a} / 2$ and $\|g\|_{H^{-1}} \leq R$.
(2.1b) Let now $d \leq 3$ and consider the nonlinear problem of finding $u_{a, f} \in H_{0}^{1}(\mathrm{D})$ such that

$$
\begin{equation*}
\int_{\mathrm{D}} a(x) \nabla u_{a, f}(x)^{\top} \nabla v(x)+u_{a, f}(x)^{3} v(x) \mathrm{d} x={ }_{H^{-1}}\langle f, v\rangle_{H_{0}^{1}} \quad \forall v \in H_{0}^{1}(\mathrm{D}) . \tag{2.1.3}
\end{equation*}
$$

Show that there exists $\varepsilon>0$ and a constant C depending on ε and \underline{a} such that for all $f, g \in$ $H^{-1}(\mathrm{D})$ with $\|f\|_{H^{-1}},\|g\|_{H^{-1}} \leq \varepsilon$ and all $b \in L^{\infty}$ with $\|a-b\| \leq \underline{a} / 2$ it holds (2.1.2).

Problem 2.2 Linear Finite Elements for univariate elliptic equations

For given $f \in L^{2}(\mathrm{D}), u_{1} \in C^{1}(\overline{\mathrm{D}})$ and $u_{2}, u_{3} \in C^{0}(\overline{\mathrm{D}})$ consider the linear elliptic equation

$$
\begin{align*}
-\left(u_{1} q^{\prime}\right)^{\prime}+u_{2} q^{\prime}+u_{3} q & =f & & \text { in } \mathrm{D}, \tag{2.2.1}\\
q & =0 & & \text { on } \partial \mathrm{D},
\end{align*}
$$

where $\mathrm{D}=(a, b)$ and $\operatorname{essinf}_{x \in \mathrm{D}} u_{1}(x)>0$.
(2.2a) Derive the variational formulation of (2.2.1): reformulate the problem to find $q \in V:=$ $H_{0}^{1}(\mathrm{D})$ such that

$$
\begin{equation*}
a(u ; q, v)=V^{*}\langle f, v\rangle_{V} \quad \forall v \in V . \tag{2.2.2}
\end{equation*}
$$

Give sufficient conditions on u_{2} and u_{3} such that (2.2.2) is uniquely solvable (use the LaxMilgram lemma).
(2.2b) Consider the uniform mesh $x_{i}=a+h i, i=0, \ldots, N$ on D, where $h=(b-a) / N$, $N \in \mathbb{N}$. With $x_{-1}:=a-h, x_{N+1}:=b+h$, the hat functions are defined as

$$
b_{i}(x)= \begin{cases}\frac{1}{h}\left(x-x_{i-1}\right) & \text { if } x \in[a, b] \text { and } x \in\left(x_{i-1}, x_{i}\right), \\ \frac{1}{h}\left(-x+x_{i+1}\right) & \text { if } x \in[a, b] \text { and } x \in\left(x_{i}, x_{i+1}\right), \\ 0 & \text { else },\end{cases}
$$

for $i=0, \ldots, N$. Define the Finite Element (FE) space $\widetilde{V}_{N}:=\operatorname{span}\left\{b_{0}, \ldots, b_{N}\right\} \subset H^{1}(\mathrm{D})$. Which functions lie in the space $V_{N}:=\widetilde{V}_{N} \cap H_{0}^{1}(\mathrm{D})$? The variational formulation over V_{N} reads: find (the unique) $q_{N} \in V_{N}$ such that

$$
\begin{equation*}
a\left(u ; q_{N}, v_{N}\right)=\left\langle f, v_{N}\right\rangle_{V^{*}, V}, \quad \forall v_{N} \in V_{N} \tag{2.2.3}
\end{equation*}
$$

Derive an equivalent matrix formulation $\mathbf{A} \mathbf{q}_{N}=\mathbf{F}$ of (2.2.3): here the vector $\mathbf{q}_{N}=\left(q_{N, i}\right)_{i=0}^{N} \in$ \mathbb{R}^{N+1} is such that $q_{N}=\sum_{i=0}^{N} q_{N, i} b_{i}$. Give exact formulas for the entries of the "stiffness matrix" $\mathbf{A} \in \mathbb{R}^{N+1 \times N+1}$ and the "load vector" $\mathbf{F} \in \mathbb{R}^{N+1}$.
(2.2c) Implement a function stiff.m in Matlab which takes the functions $u=\left(u_{1}, u_{2}, u_{3}\right)$ and the vector $\mathbf{x}=\left(x_{i}\right)_{i=0}^{N}$ (representing the mesh) as input and returns \mathbf{A} as output. Moreover implement load_vec.m which takes the functions f and the vector \mathbf{x} as input and returns the load vector \mathbf{F}. (If you prefer you can use another programming language to solve this exercise.)
(2.2d) Test your code with the data $\mathrm{D}=(0,1), u_{1}(x)=1+x, u_{2}(x)=x, u_{3}(x)=2$ and $q(x)=x \cos (x \pi / 2)$: Solve the FE system for $N=2^{j}, j=4, \ldots, 12$ and plot the error in the $H^{1}(\mathrm{D})$ and $L^{2}(\mathrm{D})$ norm. Which convergence rate do you observe?
(2.2e) Consider a parametric coefficient $u_{1}=2+y \sin (2 \pi x)$ for $y \in[-1,1]$ and $u_{2}=u_{3}=0$ as well as the right-hand side $f(x)=1$. Write a function which takes as input N and y and returns the FEM solution $q_{N ; y}$ (in the form of a vector containing its coefficients).
(2.2f) Now we want to approximate the Bochner integral $\int_{-1}^{1} q_{N ; y} \mathrm{~d} y \in V_{N}$ with a Gauss rule: Use the given Matlab function gauleg.m to obtain the quadrature weights α_{i} and quadrature points $x_{i} \in[-1,1]$ for $i=0, \ldots, M$. Then approximate the integral via the quadrature formula

$$
\begin{equation*}
Q_{M}\left(q_{N}\right):=\sum_{i=0}^{M} \alpha_{i} q_{N ; x_{i}} \tag{2.2.4}
\end{equation*}
$$

For $N:=2^{8}$ plot the error decay of $\left\|\int_{-1}^{1} u_{N ; y} \mathrm{~d} y-Q_{M}\left(q_{N}\right)\right\|_{H^{1}(\mathrm{D})}$ for $M=1, \ldots, 15$. What asymptotic behaviour do you observe as $M \rightarrow \infty$?
Hint: As a reference value for $\int_{-1}^{1} u_{N ; y} \mathrm{~d} y$ use $Q_{20}\left(q_{N}\right)$.
(2.2g) Consider the non-linear problem from the previous exercise sheet

$$
\begin{equation*}
\mathcal{R}(q)=-q^{\prime \prime}+q^{3}-f=0 \tag{2.2.5}
\end{equation*}
$$

The goal of this exercise is to approximate the FE solution q_{N} with a Newton iteration:

```
Algorithm 2.1 Newton Iteration.
Require: Absolute tolerance \(\tau>0\), max. number of iterations \(k_{\max }\)
    given \(q_{0}, s_{0} \leftarrow 1, k \leftarrow 0\)
    while \(\left\|s_{k}\right\|_{L^{2}(\mathrm{D})}>\tau\) and \(k \leq k_{\max }\) do
        solve \(\mathrm{D} \mathcal{R}\left(q_{k}\right) s_{k+1}=\mathcal{R}\left(q_{k}\right)\) for \(s_{k+1}\)
        \(q_{k+1} \leftarrow q_{k}-s_{k+1}\)
        \(k \leftarrow k+1\)
    end while
    return \(q_{k}\)
```

1. State the variational formulation of (2.2.3).
2. Implement a function FE_func_eval.m in Matlab that takes the coefficients of a FE function v_{N}, the mesh points $\left\{x_{0}, \ldots, x_{N}\right\}$, and a certain point $x \in \mathrm{D}$ as input and returns the value of this FE function at x as output.
3. State the elements of the given Newton iteration in variational form with respect to the FE space V_{N}.
4. Implement the Newton iteration to approximate q_{N}.

Test your implementation with the function $q(x)=c x \cos (\pi x / 2)$ for different values of $c>0$. Comment on the number of steps needed in the Newton iteration for a certain chosen accuracy.

Published on October 12.
To be submitted on October 26. Last modified on October 20, 2017

