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Exercise 2

Problem 2.1 Continuous dependence on data
Let D ⊆ Rd be a bounded Lipschitz domain and let a ∈ L∞(D,R) such that for two constants
0 < a ≤ a <∞ it holds a ≤ a ≤ a a.e. in D. Moreover let f ∈ H−1(D).

(2.1a) Denote by ua,f ∈ H1
0 (D) the unique solution of the variational problem∫

D

a(x)∇ua,f (x)>∇v(x) dx = H−1〈f, v〉H1
0

∀v ∈ H1
0 (D). (2.1.1)

Fix R > 0. Prove that ua,f is locally Lipschitz continuous as a function of a ∈ L∞(D) and
f ∈ H−1(D): there exists a constant C depending on a and R such that

‖ua,f − ub,g‖H1
0 (D) ≤ C(‖a− b‖L∞(D) + ‖f − g‖H−1(D)), (2.1.2)

whenever ‖a− b‖L∞(D) ≤ a/2 and ‖g‖H−1 ≤ R.

(2.1b) Let now d ≤ 3 and consider the nonlinear problem of finding ua,f ∈ H1
0 (D) such that∫

D

a(x)∇ua,f (x)>∇v(x) + ua,f (x)
3v(x) dx = H−1〈f, v〉H1

0
∀v ∈ H1

0 (D). (2.1.3)

Show that there exists ε > 0 and a constant C depending on ε and a such that for all f , g ∈
H−1(D) with ‖f‖H−1 , ‖g‖H−1 ≤ ε and all b ∈ L∞ with ‖a− b‖ ≤ a/2 it holds (2.1.2).

Problem 2.2 Linear Finite Elements for univariate elliptic equations
For given f ∈ L2(D), u1 ∈ C1(D) and u2, u3 ∈ C0(D) consider the linear elliptic equation

−(u1q′)′ + u2q
′ + u3q = f in D,

q = 0 on ∂D,
(2.2.1)

where D = (a, b) and essinfx∈D u1(x) > 0.

(2.2a) Derive the variational formulation of (2.2.1): reformulate the problem to find q ∈ V :=
H1

0 (D) such that
a(u; q, v) = V ∗〈f, v〉V ∀v ∈ V. (2.2.2)

Give sufficient conditions on u2 and u3 such that (2.2.2) is uniquely solvable (use the Lax–
Milgram lemma).
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(2.2b) Consider the uniform mesh xi = a + hi, i = 0, . . . , N on D, where h = (b − a)/N ,
N ∈ N. With x−1 := a− h, xN+1 := b+ h, the hat functions are defined as

bi(x) =


1
h
(x− xi−1) if x ∈ [a, b] and x ∈ (xi−1, xi),

1
h
(−x+ xi+1) if x ∈ [a, b] and x ∈ (xi, xi+1),

0 else,

for i = 0, . . . , N . Define the Finite Element (FE) space ṼN := span{b0, . . . , bN} ⊂ H1(D).
Which functions lie in the space VN := ṼN ∩H1

0 (D)? The variational formulation over VN reads:
find (the unique) qN ∈ VN such that

a(u; qN , vN) = 〈f, vN〉V ∗,V , ∀vN ∈ VN . (2.2.3)

Derive an equivalent matrix formulation AqN = F of (2.2.3): here the vector qN = (qN,i)
N
i=0 ∈

RN+1 is such that qN =
∑N

i=0 qN,ibi. Give exact formulas for the entries of the “stiffness matrix”
A ∈ RN+1×N+1 and the “load vector” F ∈ RN+1.

(2.2c) Implement a function stiff.m in Matlab which takes the functions u = (u1, u2, u3)
and the vector x = (xi)

N
i=0 (representing the mesh) as input and returns A as output. Moreover

implement load vec.m which takes the functions f and the vector x as input and returns the
load vector F. (If you prefer you can use another programming language to solve this exercise.)

(2.2d) Test your code with the data D = (0, 1), u1(x) = 1 + x, u2(x) = x, u3(x) = 2 and
q(x) = x cos(xπ/2): Solve the FE system for N = 2j , j = 4, . . . , 12 and plot the error in the
H1(D) and L2(D) norm. Which convergence rate do you observe?

(2.2e) Consider a parametric coefficient u1 = 2 + y sin(2πx) for y ∈ [−1, 1] and u2 = u3 = 0
as well as the right-hand side f(x) = 1. Write a function which takes as input N and y and
returns the FEM solution qN ;y (in the form of a vector containing its coefficients).

(2.2f) Now we want to approximate the Bochner integral
∫ 1

−1 qN ;y dy ∈ VN with a Gauss rule:
Use the given MATLAB function gauleg.m to obtain the quadrature weights αi and quadrature
points xi ∈ [−1, 1] for i = 0, . . . ,M . Then approximate the integral via the quadrature formula

QM(qN) :=
M∑
i=0

αiqN ;xi
. (2.2.4)

For N := 28 plot the error decay of
∥∥∥∫ 1

−1 uN ;y dy −QM(qN)
∥∥∥
H1(D)

for M = 1, . . . , 15. What

asymptotic behaviour do you observe as M →∞?

HINT: As a reference value for
∫ 1

−1 uN ;y dy use Q20(qN).

(2.2g) Consider the non-linear problem from the previous exercise sheet

R(q) = −q′′ + q3 − f = 0. (2.2.5)

The goal of this exercise is to approximate the FE solution qN with a Newton iteration:
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Algorithm 2.1 Newton Iteration.
Require: Absolute tolerance τ > 0, max. number of iterations kmax

given q0, s0 ← 1, k ← 0
while ‖sk‖L2(D) > τ and k ≤ kmax do

solve DR(qk)sk+1 = R(qk) for sk+1

qk+1 ← qk − sk+1

k ← k + 1
end while
return qk

1. State the variational formulation of (2.2.3).

2. Implement a function FE func eval.m in Matlab that takes the coefficients of a FE
function vN , the mesh points {x0, . . . , xN}, and a certain point x ∈ D as input and returns
the value of this FE function at x as output.

3. State the elements of the given Newton iteration in variational form with respect to the FE
space VN .

4. Implement the Newton iteration to approximate qN .

Test your implementation with the function q(x) = cx cos(πx/2) for different values of c > 0.
Comment on the number of steps needed in the Newton iteration for a certain chosen accuracy.
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