Prof. Ch. Schwab
L. Herrmann, J. Zech

Numerical Analysis of High-Dimensional Problems

Exercise 3

Problem 3.1 Bochner spaces as tensor products

Definition Let X, Y be two real Banach spaces and p, $q \in(1, \infty)$ s.t. $1 / p+1 / q=1$. For y_{1}, \ldots, y_{n} set

$$
\begin{equation*}
\mu_{q}\left(y_{1}, \ldots, y_{n}\right):=\sup _{\|\psi\|_{Y^{\prime}} \leq 1}\left(\sum_{i=1}^{n}\left|\psi\left(y_{i}\right)\right|^{q}\right)^{1 / q} \tag{3.1.1}
\end{equation*}
$$

and for $z \in X \otimes_{\alpha} Y$ we introduce the norm

$$
\begin{equation*}
\|z\|_{p}:=\inf \left\{\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p} \mu_{q}\left(y_{1}, \ldots, y_{n}\right) \mid z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} \tag{3.1.2}
\end{equation*}
$$

The space $X \otimes_{p} Y$ is the closure of the algebraic tensor product $X \otimes_{\alpha} Y$ under this norm.
Let (Ω, Σ, μ) be a finite measure space. We consider the following three natural embeddings

- $\Lambda: L^{p}(\Omega, \mathbb{R}) \otimes_{p} Y \rightarrow L^{p}(\Omega, Y)$ via $\Lambda\left(\sum_{i=1}^{n} f_{i} \otimes y_{i}\right)(\omega)=\sum_{i=1}^{n} f_{i}(\omega) y_{i}$,
- $\Gamma: L^{p}(\Omega, Y) \rightarrow Y \otimes_{p} L^{p}(\Omega, \mathbb{R})$ via $\Gamma\left(\sum_{i=1}^{n} \mathbb{1}_{A_{i}} y_{i}\right)=\sum_{i=1}^{n} y_{i} \otimes \mathbb{1}_{A_{i}}$,
- $\Phi: Y \otimes_{p} L^{p}(\Omega, \mathbb{R}) \rightarrow L^{p}(\Omega, \mathbb{R}) \otimes_{p} Y$ via $\Phi\left(\sum_{i=1}^{n} y_{i} \otimes f_{i}\right)=\sum_{i=1}^{n} f_{i} \otimes y_{i}$,
where the measure on the L^{p} spaces is always μ, and $\omega \in \Omega, A_{i} \in \Sigma, y_{i} \in Y, f_{i} \in L^{p}(\Omega, \mathbb{R})$ for all i. Note that the above embeddings, which are given on dense subsets, are obtained as the unique continuous extensions of the respective maps.
(3.1a) Prove that $\|\Lambda\|_{L\left(L^{p}(\Omega, \mathbb{R}) \otimes_{p} Y, L^{p}(\Omega, Y)\right)}=1$.
(3.1b) Prove that $\|\Gamma\|_{L\left(L^{p}(\Omega, Y), Y \otimes_{p} L^{p}(\Omega, \mathbb{R})\right)}=1$.

Hint: Proceed as follows:

- Consider (the dense set of) elements $\sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{A_{i}} y_{i}$ where $A_{i} \cap A_{j}=$ for all $i \neq j$ and the $\alpha_{i} \in \mathbb{R}$ are such that $\left\|\alpha_{i} \mathbb{1}_{A_{i}}\right\|_{L^{p}}=1$ for all $i=1, \ldots, n$.
- Show that for such expansions

$$
\begin{equation*}
\mu_{q}\left(\alpha_{1} \mathbb{1}_{A_{1}}, \ldots, \alpha_{n} \mathbb{1}_{A_{n}}\right)=\sup _{\sum_{i=1}^{n} \lambda_{i}^{p} \leq 1}\left\|\sum_{i=1}^{n} \lambda_{i} \alpha_{i} \mathbb{1}_{A_{i}}\right\|_{L^{p}}=1 . \tag{3.1.3}
\end{equation*}
$$

- Conclude that $\left\|\sum_{i=1}^{n} y_{i} \otimes \alpha_{i} \mathbb{1}_{A_{i}}\right\|_{Y \otimes_{p} L^{p}(\Omega, \mathbb{R})} \leq\left\|\sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{A_{i}} y_{i}\right\|_{L^{p}(\Omega, Y)}$.
(3.1c) Assume that Φ is an isometric isomorphism. Prove that

$$
\begin{equation*}
L^{p}(\Omega, Y)=L^{p}(\Omega, \mathbb{R}) \otimes_{p} Y \tag{3.1.4}
\end{equation*}
$$

in the sense that there exists an isometric isomorphism.
Hint: Show that $\Lambda \Phi \Gamma=\mathrm{Id}$ and consider $\Phi \Gamma$.
(3.1d) Conclude that $L^{p}([0,1]) \otimes_{p} L^{p}([0,1])=L^{p}\left([0,1]^{2}\right)$ (w.r.t. the Lebesgue measure).

Problem 3.2 Quasi optimality of nonlinear FEM

Give a proof of item 2 in the proof of Thm. 1.47 in the lecture notes: Let q^{h} be a Petrov-Galerkin solution. Recall that $\mathcal{R}_{h}: \mathcal{X} \rightarrow \mathcal{Y}^{\prime}$, cp. (1.103) from the lecture notes. Show that $\mathcal{R}_{h}\left(q^{h}\right)=0$ and that $q_{h} \in \mathcal{X}^{h}$ is the only solution $w \in \mathcal{X}$ of $\mathcal{R}_{h}(w)=0$.

Problem 3.3 Non-separability of Hölder spaces

Let $\gamma \in(0,1]$ and $k \in \mathbb{N}_{0}$. Show that the Hölder space $C^{k, \gamma}([0,1])$ is not separable.
Hint: Find an uncountable set of Hölder functions such that their distance is uniformly bounded from below.

Problem 3.4 Hilbert-Schmidt Operators

(3.4a) Let H_{1}, H_{2} be separable Hilbert spaces. Let $\left(e_{k}\right)_{k \geq 1}$ be an ONB of H_{1}. Recall the Hilbert-Schmidt norm, which is induced by the inner product

$$
(S, T)_{\mathrm{HS}}:=\sum_{k \geq 1}\left(S e_{k}, T e_{k}\right)_{H_{2}}, \quad \forall S, T \in \mathcal{L}_{\mathrm{HS}}\left(H_{1}, H_{2}\right) .
$$

Show that the induced norm does not depend on the choice of ONB.
(3.4b) Let H_{1}, H_{2} be separable Hilbert spaces. If $S \in \mathcal{L}\left(H_{2}\right)$ and $T \in \mathcal{L}_{\mathrm{HS}}\left(H_{1}, H_{2}\right)$, then $S T \in \mathcal{L}_{\mathrm{HS}}\left(H_{1}, H_{2}\right)$ and

$$
\|S T\|_{\mathcal{L}_{\mathrm{HS}}\left(H_{1}, H_{2}\right)} \leq\|S\|_{\mathcal{L}\left(H_{2}\right)}\|T\|_{\mathcal{L}_{\mathrm{HS}}\left(H_{1}, H_{2}\right)}
$$

Problem 3.5 Nuclear Operators

Let H_{1}, H_{2}, H_{3} be separable Hilbert spaces.
(3.5a) If $S \in \mathcal{L}_{\mathrm{N}}\left(H_{2}, H_{3}\right)$ and $T \in \mathcal{L}\left(H_{1}, H_{2}\right)$, then $S T \in \mathcal{L}_{\mathrm{N}}\left(H_{1}, H_{3}\right)$ and

$$
\|S T\|_{\mathcal{L}_{\mathrm{N}}\left(H_{1}, H_{3}\right)} \leq\|S\|_{\mathcal{L}_{\mathrm{N}}\left(H_{2}, H_{3}\right)}\|T\|_{\mathcal{L}\left(H_{1}, H_{2}\right)}
$$

(3.5b) If $S \in \mathcal{L}\left(H_{2}, H_{3}\right)$ and $T \in \mathcal{L}_{\mathrm{N}}\left(H_{1}, H_{2}\right)$, then $S T \in \mathcal{L}_{\mathrm{N}}\left(H_{1}, H_{3}\right)$ and

$$
\|S T\|_{\mathcal{L}_{\mathrm{N}}\left(H_{1}, H_{3}\right)} \leq\|S\|_{\mathcal{L}\left(H_{2}, H_{3}\right)}\|T\|_{\mathcal{L}_{\mathrm{N}}\left(H_{1}, H_{2}\right)}
$$

(3.5c) If $S \in \mathcal{L}\left(H_{1}, H_{2}\right)$ and $T \in \mathcal{L}\left(H_{2}, H_{1}\right)$, and if either S or T is of trace class, then $S T \in \mathcal{L}_{\mathrm{N}}\left(H_{1}\right)$ and $\operatorname{Tr}(T S)=\operatorname{Tr}(S T)$.
(3.5d) Verify the set inclusions

$$
\mathcal{L}_{\mathrm{N}}\left(H_{1}, H_{2}\right) \subset \mathcal{L}_{\mathrm{HS}}\left(H_{1}, H_{2}\right) \subset \mathcal{K}\left(H_{1}, H_{2}\right) \subset \mathcal{L}\left(H_{1}, H_{2}\right) .
$$

Problem 3.6 Tensors

(3.6a) Let X, Y be two Banach spaces. Show that for every finite linear combination $0 \neq$ $\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \otimes_{\alpha} Y$ there exists $m \leq n$ and two sets of linearly independent vectors $\left\{a_{i} \mid i=1, \ldots, m\right\} \subseteq X,\left\{b_{i} \mid i=1, \ldots, m\right\} \subseteq Y$ such that $\sum_{i=1}^{n} x_{i} \otimes y_{i}=\sum_{i=1}^{m} a_{i} \otimes b_{i}$.
(3.6b) Let X, Y, V, W be Hilbert spaces and let $A \in \mathcal{L}(X, V), B \in \mathcal{L}(Y, W)$ be bounded linear opertors. Show that $\|A \otimes B\|_{\mathcal{L}\left(X \otimes_{\eta} Y, V \otimes_{\eta} W\right)} \leq\|A\|_{\mathcal{L}(X, V)}\|B\|_{\mathcal{L}(Y, W)}$.

Published on October 26.
To be submitted on November 9 .
Last modified on October 26, 2017

