Prof. Ch. Schwab L. Herrmann, J. Zech

Numerical Analysis of High-Dimensional Problems ETH Zürich D-MATH

Exercise 3

Problem 3.1 Bochner spaces as tensor products

Definition Let X, Y be two real Banach spaces and p, $q \in (1, \infty)$ s.t. 1/p + 1/q = 1. For y_1, \ldots, y_n set

$$\mu_q(y_1, \dots, y_n) := \sup_{\|\psi\|_{Y'} \le 1} \left(\sum_{i=1}^n |\psi(y_i)|^q \right)^{1/q}, \tag{3.1.1}$$

and for $z \in X \otimes_{\alpha} Y$ we introduce the norm

$$||z||_{p} := \inf\left\{\left(\sum_{i=1}^{n} ||x_{i}||^{p}\right)^{1/p} \mu_{q}(y_{1}, \dots, y_{n}) \left| z = \sum_{i=1}^{n} x_{i} \otimes y_{i} \right\}.$$
 (3.1.2)

The space $X \otimes_p Y$ is the closure of the algebraic tensor product $X \otimes_{\alpha} Y$ under this norm. Let (Ω, Σ, μ) be a finite measure space. We consider the following three natural embeddings

• $\Lambda: L^p(\Omega, \mathbb{R}) \otimes_p Y \to L^p(\Omega, Y)$ via $\Lambda(\sum_{i=1}^n f_i \otimes y_i)(\omega) = \sum_{i=1}^n f_i(\omega)y_i$,

•
$$\Gamma: L^p(\Omega, Y) \to Y \otimes_p L^p(\Omega, \mathbb{R})$$
 via $\Gamma(\sum_{i=1}^n \mathbb{1}_{A_i} y_i) = \sum_{i=1}^n y_i \otimes \mathbb{1}_{A_i}$,

• $\Phi: Y \otimes_p L^p(\Omega, \mathbb{R}) \to L^p(\Omega, \mathbb{R}) \otimes_p Y$ via $\Phi(\sum_{i=1}^n y_i \otimes f_i) = \sum_{i=1}^n f_i \otimes y_i$,

where the measure on the L^p spaces is always μ , and $\omega \in \Omega$, $A_i \in \Sigma$, $y_i \in Y$, $f_i \in L^p(\Omega, \mathbb{R})$ for all *i*. Note that the above embeddings, which are given on dense subsets, are obtained as the unique continuous extensions of the respective maps.

(3.1a) Prove that $\|\Lambda\|_{L(L^p(\Omega,\mathbb{R})\otimes_p Y,L^p(\Omega,Y))} = 1.$

(3.1b) Prove that $\|\Gamma\|_{L(L^p(\Omega,Y),Y\otimes_p L^p(\Omega,\mathbb{R}))} = 1.$

HINT: Proceed as follows:

- Consider (the dense set of) elements $\sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i} y_i$ where $A_i \cap A_j$ = for all $i \neq j$ and the $\alpha_i \in \mathbb{R}$ are such that $\|\alpha_i \mathbb{1}_{A_i}\|_{L^p} = 1$ for all i = 1, ..., n.
- Show that for such expansions

$$\mu_q(\alpha_1 \mathbb{1}_{A_1}, \dots, \alpha_n \mathbb{1}_{A_n}) = \sup_{\sum_{i=1}^n \lambda_i^p \le 1} \left\| \sum_{i=1}^n \lambda_i \alpha_i \mathbb{1}_{A_i} \right\|_{L^p} = 1.$$
(3.1.3)

• Conclude that $\left\|\sum_{i=1}^{n} y_i \otimes \alpha_i \mathbb{1}_{A_i}\right\|_{Y \otimes_p L^p(\Omega, \mathbb{R})} \leq \left\|\sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i} y_i\right\|_{L^p(\Omega, Y)}$.

(3.1c) Assume that Φ is an isometric isomorphism. Prove that

$$L^{p}(\Omega, Y) = L^{p}(\Omega, \mathbb{R}) \otimes_{p} Y$$
(3.1.4)

in the sense that there exists an isometric isomorphism.

HINT: Show that $\Lambda \Phi \Gamma = Id$ and consider $\Phi \Gamma$.

(3.1d) Conclude that $L^{p}([0,1]) \otimes_{p} L^{p}([0,1]) = L^{p}([0,1]^{2})$ (w.r.t. the Lebesgue measure).

Problem 3.2 Quasi optimality of nonlinear FEM

Give a proof of item 2 in the proof of Thm. 1.47 in the lecture notes: Let q^h be a Petrov–Galerkin solution. Recall that $\mathcal{R}_h : \mathcal{X} \to \mathcal{Y}'$, cp. (1.103) from the lecture notes. Show that $\mathcal{R}_h(q^h) = 0$ and that $q_h \in \mathcal{X}^h$ is the only solution $w \in \mathcal{X}$ of $\mathcal{R}_h(w) = 0$.

Problem 3.3 Non-separability of Hölder spaces

Let $\gamma \in (0,1]$ and $k \in \mathbb{N}_0$. Show that the Hölder space $C^{k,\gamma}([0,1])$ is not separable.

HINT: Find an uncountable set of Hölder functions such that their distance is uniformly bounded from below.

Problem 3.4 Hilbert–Schmidt Operators

(3.4a) Let H_1, H_2 be separable Hilbert spaces. Let $(e_k)_{k\geq 1}$ be an ONB of H_1 . Recall the Hilbert–Schmidt norm, which is induced by the inner product

$$(S,T)_{\mathrm{HS}} := \sum_{k \ge 1} (Se_k, Te_k)_{H_2}, \quad \forall S, T \in \mathcal{L}_{\mathrm{HS}}(H_1, H_2).$$

Show that the induced norm does not depend on the choice of ONB.

(3.4b) Let H_1, H_2 be separable Hilbert spaces. If $S \in \mathcal{L}(H_2)$ and $T \in \mathcal{L}_{HS}(H_1, H_2)$, then $ST \in \mathcal{L}_{HS}(H_1, H_2)$ and

 $||ST||_{\mathcal{L}_{\mathrm{HS}}(H_1, H_2)} \le ||S||_{\mathcal{L}(H_2)} ||T||_{\mathcal{L}_{\mathrm{HS}}(H_1, H_2)}$

Problem 3.5 Nuclear Operators

Let H_1, H_2, H_3 be separable Hilbert spaces.

(3.5a) If
$$S \in \mathcal{L}_{N}(H_{2}, H_{3})$$
 and $T \in \mathcal{L}(H_{1}, H_{2})$, then $ST \in \mathcal{L}_{N}(H_{1}, H_{3})$ and
 $\|ST\|_{\mathcal{L}_{N}(H_{1}, H_{3})} \leq \|S\|_{\mathcal{L}_{N}(H_{2}, H_{3})} \|T\|_{\mathcal{L}(H_{1}, H_{2})}$

(3.5b) If $S \in \mathcal{L}(H_2, H_3)$ and $T \in \mathcal{L}_N(H_1, H_2)$, then $ST \in \mathcal{L}_N(H_1, H_3)$ and

$$||ST||_{\mathcal{L}_{N}(H_{1},H_{3})} \leq ||S||_{\mathcal{L}(H_{2},H_{3})} ||T||_{\mathcal{L}_{N}(H_{1},H_{2})}$$

(3.5c) If $S \in \mathcal{L}(H_1, H_2)$ and $T \in \mathcal{L}(H_2, H_1)$, and if either S or T is of trace class, then $ST \in \mathcal{L}_N(H_1)$ and Tr(TS) = Tr(ST).

$$\mathcal{L}_{\mathrm{N}}(H_1, H_2) \subset \mathcal{L}_{\mathrm{HS}}(H_1, H_2) \subset \mathcal{K}(H_1, H_2) \subset \mathcal{L}(H_1, H_2).$$

Problem 3.6 Tensors

(3.6a) Let X, Y be two Banach spaces. Show that for every finite linear combination $0 \neq \sum_{i=1}^{n} x_i \otimes y_i \in X \otimes_{\alpha} Y$ there exists $m \leq n$ and two sets of linearly independent vectors $\{a_i \mid i = 1, \ldots, m\} \subseteq X, \{b_i \mid i = 1, \ldots, m\} \subseteq Y$ such that $\sum_{i=1}^{n} x_i \otimes y_i = \sum_{i=1}^{m} a_i \otimes b_i$.

(3.6b) Let X, Y, V, W be Hilbert spaces and let $A \in \mathcal{L}(X, V), B \in \mathcal{L}(Y, W)$ be bounded linear opertors. Show that $||A \otimes B||_{\mathcal{L}(X \otimes_{\eta} Y, V \otimes_{\eta} W)} \leq ||A||_{\mathcal{L}(X, V)} ||B||_{\mathcal{L}(Y, W)}$.

Published on October 26.

To be submitted on November 9.

Last modified on October 26, 2017