Prof. Ch. Schwab
L. Herrmann, J. Zech

Numerical Analysis of High-Dimensional Problems

Exercise 4

Problem 4.1 $\quad \ell^{p}$-summability of gpc coefficients

We consider the affine parametric operator equation on a bounded Lipschitz domain $D \subset \mathbb{R}^{d}$ for all $\boldsymbol{y} \in U=[-1,1]^{\mathbb{N}}$

$$
\left\{\begin{array}{l}
-\operatorname{div}(u(\boldsymbol{y}) \nabla q(\boldsymbol{y}))=f \\
\left.q(\boldsymbol{y})\right|_{\partial D}=0
\end{array}\right.
$$

where $u(\boldsymbol{y}):=\bar{u}+\sum_{j \geq 1} y_{j} \psi_{j}$ such that $\bar{u}, \psi_{j} \in L^{\infty}(D)$ with $0<\operatorname{essinf}_{x \in D} \bar{u}(x)$ and for some $r>0$

$$
\begin{equation*}
\sum_{j \geq 1}\left|\psi_{j}(x)\right| \leq \bar{u}(x)-r \quad \text { for a.e. } x \in D \tag{4.1.1}
\end{equation*}
$$

The variational formulation reads: for every $\boldsymbol{y} \in U$ find $q(\boldsymbol{y}) \in V:=H_{0}^{1}(D)$ s.t.

$$
\int_{D} u(\boldsymbol{y}) \nabla q(\boldsymbol{y}) \cdot \nabla v \mathrm{~d} x={ }_{V^{\prime}}\langle f, v\rangle_{V}, \quad \forall v \in V .
$$

Part 1:

We recall the Taylor series of the parametric solution

$$
q(\boldsymbol{y})=\sum_{\boldsymbol{\nu} \in \mathcal{F}} t_{\boldsymbol{\nu}} \boldsymbol{y}^{\boldsymbol{\nu}}, \quad \text { where } \quad t_{\boldsymbol{\nu}}=\left.\frac{1}{\boldsymbol{\nu}!}\left(\partial_{\boldsymbol{y}}^{\boldsymbol{\nu}} q(\boldsymbol{y})\right)\right|_{\boldsymbol{y}=0} \quad \text { for all } \boldsymbol{\nu} \in \mathcal{F}
$$

For $p \in(0,2)$ set $p^{\prime}=\frac{2 p}{2-p}$ and assume that there exists $\boldsymbol{\rho} \in(1, \infty)^{\mathbb{N}}$ such that

$$
\begin{equation*}
\sum_{j \geq 1} \rho_{j}\left|\psi_{j}(x)\right| \leq \bar{u}(x)-r \quad \text { for a.e. } x \in D \tag{4.1.2}
\end{equation*}
$$

and such that $\rho^{-1} \in \ell^{p^{\prime}}(\mathbb{N})$. The goal of this exercise is to prove under this conditions that $\left(\left\|t_{\boldsymbol{\nu}}\right\|_{V}\right)_{\boldsymbol{\nu} \in \mathcal{F}} \in \ell^{p}(\mathcal{F})$. We will prove this statement in several steps.
(4.1a) Prove that the condition in (4.1.1) is equivalent to:

$$
\eta:=\left\|\frac{\sum_{j \geq 1}\left|\psi_{i}\right|}{\bar{u}}\right\|_{L^{\infty}(D)}<1 .
$$

(4.1b) Prove the following recurrence relation of the Taylor coefficients: for all $0 \neq \boldsymbol{\nu} \in \mathcal{F}$ it holds that

$$
\int_{D} \bar{u} \nabla t_{\boldsymbol{\nu}} \cdot \nabla v \mathrm{~d} x=-\sum_{j \in \operatorname{supp}(\boldsymbol{\nu})} \int_{D} \psi_{j} \nabla t_{\boldsymbol{\nu}-e_{j}} \cdot \nabla v \mathrm{~d} x \quad \text { for all } v \in V
$$

Define for all $v \in V$ the energy norm $\|v\|_{\bar{u}}$ by

$$
\|v\|_{\bar{u}}:=\left(\int_{D} \bar{u}|\nabla v|^{2} \mathrm{~d} x\right)^{\frac{1}{2}} .
$$

(4.1c) $\operatorname{Set} \beta:=\frac{\eta}{2-\eta}$ and prove that for all $k \in \mathbb{N}$ it holds that

$$
\sum_{|\boldsymbol{\nu}|=k}\left\|t_{\boldsymbol{\nu}}\right\|_{\bar{u}}^{2} \leq \beta \sum_{|\boldsymbol{\nu}|=k-1}\left\|t_{\boldsymbol{\nu}}\right\|_{\bar{u}}^{2} .
$$

HINT: Apply the claims of (4.1b) and (4.1a).
(4.1d) Prove that

$$
\sum_{\nu \in \mathcal{F}}\left\|t_{\nu}\right\|_{V}^{2} \leq \frac{(2-\eta)\|\bar{u}\|_{L^{\infty}(D)}}{(2-2 \eta)\left(\operatorname{ess} \inf _{x \in D} \bar{u}(x)\right)^{3}}\|f\|_{H^{-1}(D)}^{2}<\infty .
$$

Hint: Apply the claim of (4.1c).
(4.1e) Prove that the condition in (4.1.2) is equivalent to:

$$
\left\|\frac{\sum_{j \geq 1} \rho_{j}\left|\psi_{i}\right|}{\bar{u}}\right\|_{L^{\infty}(D)}<1 .
$$

(4.1f) Prove under the specified conditions that $\left(\boldsymbol{\rho}^{\boldsymbol{\nu}}\left\|t_{\boldsymbol{\nu}}\right\|_{V}\right)_{\boldsymbol{\nu} \in \mathcal{F}} \in \ell^{2}(\mathcal{F})$.

Hint: Combine the claims of (4.1d) and (4.1e).
(4.1g) Finally prove using the property $\boldsymbol{\rho}^{-1} \in \ell^{p^{\prime}}(\mathbb{N})$ that $\left(\left\|t_{\boldsymbol{\nu}}\right\|_{V}\right)_{\boldsymbol{\nu} \in \mathcal{F}} \in \ell^{p}(\mathcal{F})$.

Hint: Apply the claim of (4.1f) and use the Hölder inequality.

Part 2:

Consider the tensorized Legendre polynomials $L_{\nu}(\boldsymbol{y})=\prod_{j \geq 1} L_{\nu_{j}}\left(y_{j}\right)$, where L_{k} denotes the Legendre polynomial on $[-1,1]$, which is normalized in $L^{2}([-1,1], \mathrm{d} y / 2), k \geq 0$. Define also the product measure on U

$$
\mathrm{d} \mu(\boldsymbol{y}):=\bigotimes_{j \geq 1} \frac{\mathrm{~d} y_{j}}{2}
$$

We define the Legendre coefficients of $q(\boldsymbol{y})$ by

$$
q_{\nu}:=\int_{U} q(\boldsymbol{y}) L_{\boldsymbol{\nu}}(\boldsymbol{y}) \mathrm{d} \mu(\boldsymbol{y}), \quad \forall \boldsymbol{\nu} \in \mathcal{F} .
$$

Since $\left(L_{\nu}\right)_{\boldsymbol{\nu} \in \mathcal{F}}$ is an orthonormal basis,

$$
q=\sum_{\boldsymbol{\nu} \in \mathcal{F}} q_{\boldsymbol{\nu}} L_{\boldsymbol{\nu}}
$$

with convergence in $L^{2}(U, V ; \mu)$. Suppose that

$$
\left\|\frac{\sum_{j \geq 1} \rho_{j}\left|\psi_{i}\right|}{\bar{u}}\right\|_{L^{\infty}(D)}<1
$$

(4.1h) For $\boldsymbol{y}, \boldsymbol{z} \in U$, define $T_{\boldsymbol{y}} \boldsymbol{z}:=\left(y_{j}+\left(1-\left|y_{j}\right|\right) \rho_{j} z_{j}\right)_{j \geq 1}$. Furthermore, for $\boldsymbol{y}, \boldsymbol{z} \in U$, $\bar{u}_{\boldsymbol{y}}:=\bar{u}+\sum_{j \geq 1} y_{j} \psi_{j}, \psi_{\boldsymbol{y}, j}:=\left(1-\left|y_{j}\right|\right) \rho_{j} \psi_{j}, j \geq 1$. Let $q_{\boldsymbol{y}}$ be the solution of

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(\bar{u}_{\boldsymbol{y}}+\sum_{j \geq 1} z_{j} \psi_{\boldsymbol{y}, j}\right) \nabla q_{\boldsymbol{y}}(\boldsymbol{z})\right)=f \\
\left.q(\boldsymbol{y})\right|_{\partial D}=0
\end{array}\right.
$$

Define the Taylor coefficients $t_{\boldsymbol{y}, \boldsymbol{\nu}}:=\left.(\boldsymbol{\nu}!)^{-1}\left(\partial_{\boldsymbol{z}}^{\boldsymbol{z}} q_{\boldsymbol{y}}(\boldsymbol{z})\right)\right|_{\boldsymbol{z}=0}, \boldsymbol{\nu} \in \mathcal{F}$. Prove that there exists a constant $C>0$ such that for every $\boldsymbol{y} \in U$

$$
\sum_{\boldsymbol{\nu} \in \mathcal{F}}\left\|t_{\boldsymbol{y}, \boldsymbol{\nu}}\right\|_{V}^{2} \leq C\|f\|_{V^{\prime}}^{2}
$$

Hint: Apply the result of (4.1d).
(4.1i) Prove that there exists a constant $C>0$ such that

$$
\sum_{\boldsymbol{\nu} \in \mathcal{F}} \prod_{j \geq 1}\left(2 \nu_{j}+1\right)^{-1} \boldsymbol{\rho}^{2 \boldsymbol{\nu}}\left\|q_{\nu}\right\|_{V}^{2} \leq C\|f\|_{V^{\prime}}^{2} .
$$

Hint: You may use Rodrigues' formula:

$$
L_{\boldsymbol{\nu}}(\boldsymbol{y})=\prod_{j \geq 1} \partial_{y_{j}}^{\nu_{j}}\left(\frac{\sqrt{2 \nu_{j}+1}}{\nu_{j}!2^{\nu_{j}}}\left(y_{j}^{2}-1\right)^{\nu_{j}}\right), \quad \forall \boldsymbol{\nu} \in \mathcal{F}, \forall \boldsymbol{y} \in U .
$$

(4.1j) Let $p \in(0,2)$ and define $p^{\prime}:=2 p /(2-p)$. Finally prove using the property $\boldsymbol{\rho}^{-1} \in \ell^{p^{\prime}}(\mathbb{N})$ that $\left(\left\|q_{\nu}\right\|_{V}\right)_{\boldsymbol{\nu} \in \mathcal{F}} \in \ell^{p}(\mathcal{F})$.

Part 3:

Suppose that the Dirichlet Laplacean is boundedly invertible from $H^{2}(D) \cap V$ onto $L^{2}(D)$, i.e.,

$$
(-\Delta)^{-1}: L^{2}(D) \rightarrow H^{2}(D) \cap V
$$

is bounded. This is for example true if D has a smooth boundary or D is a convex polygon. Assume that $f \in L^{2}(D)$. Suppose that for $\boldsymbol{\rho} \in(1, \infty)^{\mathbb{N}}$,

$$
\left\|\frac{\sum_{j \geq 1} \rho_{j}\left|\psi_{i}\right|}{\bar{u}}\right\|_{L^{\infty}(D)}<1 \quad \text { and } \quad\left\||\nabla \bar{u}|+\sum_{j \geq 1} \rho_{j}\left|\nabla \psi_{j}\right|\right\|_{L^{\infty}(D)}<\infty
$$

(4.1k) Prove that $\sup _{\boldsymbol{y} \in U}\|q(\boldsymbol{y})\|_{H^{2}(D)}<\infty$.
(4.11) Formally rewrite $-\operatorname{div}(u(\boldsymbol{y}) \nabla q(\boldsymbol{y}))=-u(\boldsymbol{y}) \Delta q(\boldsymbol{y})-\nabla u(\boldsymbol{y}) \cdot \nabla q(\boldsymbol{y})$. Prove that there exists a constant $C>0$ such that

$$
\sum_{\boldsymbol{\nu} \in \mathcal{F}} \boldsymbol{\rho}^{2 \boldsymbol{\nu}}\left\|t_{\boldsymbol{\nu}}\right\|_{H^{2}(D)}^{2} \leq C\|f\|_{L^{2}(D)}^{2}
$$

HINT: Apply the Young inequality, i.e., for every $a, b, \varepsilon \in(0, \infty), a b \leq \varepsilon a^{2}+b^{2} /(4 \varepsilon)$.
(4.1m) Assume the notation from (4.1h). Prove that there exists a constant $C>0$ such that for every $\boldsymbol{y} \in U$

$$
\sum_{\boldsymbol{\nu} \in \mathcal{F}}\left\|t_{\boldsymbol{y}, \nu}\right\|_{H^{2}(D)}^{2} \leq C\|f\|_{L^{2}(D)}^{2}
$$

(4.1n) Prove that there exists a constant $C>0$ such that

$$
\sum_{\boldsymbol{\nu} \in \mathcal{F}} \prod_{j \geq 1}\left(2 \nu_{j}+1\right)^{-1} \boldsymbol{\rho}^{2 \boldsymbol{\nu}}\left\|q_{\nu}\right\|_{H^{2}(D)}^{2} \leq C\|f\|_{L^{2}(D)}^{2}
$$

(4.10) Let $p \in(0,2)$ and define $p^{\prime}:=2 p /(2-p)$. Finally prove using the property $\boldsymbol{\rho}^{-1} \in \ell^{p^{\prime}}(\mathbb{N})$ that $\left(\left\|t_{\boldsymbol{\nu}}\right\|_{H^{2}(D)}\right)_{\boldsymbol{\nu} \in \mathcal{F}},\left(\left\|q_{\boldsymbol{\nu}}\right\|_{H^{2}(D)}\right)_{\boldsymbol{\nu} \in \mathcal{F}} \in \ell^{p}(\mathcal{F})$.

Published on November 6.

To be submitted on November 23.
Last modified on November 22, 2017

