Prof. Ch. Schwab
L. Herrmann, J. Zech

Numerical Analysis of High-Dimensional Problems

Exercise 5

Problem 5.1 Real variable approach

Let X, Y be two Banach spaces. Let $A_{0} \in L\left(X, Y^{\prime}\right)$ be bounded and bijective and $A_{j} \in L\left(X, Y^{\prime}\right)$ bounded for all $j \in \mathbb{N}$. Set $A(\boldsymbol{y})=A_{0}+\sum_{j \in \mathbb{N}} y_{j} A_{j}$ and assume with $B_{j}:=A_{0}^{-1} A_{j}$ and $\beta_{j}:=$ $\left\|A_{0}^{-1} A_{j}\right\|_{L(X, X)}$ that $\left\|\left(\beta_{j}\right)_{j \in \mathbb{N}}\right\|_{\ell^{1}}<1$. as well as $\left\|\left(\beta_{j}\right)_{j \in \mathbb{N}}\right\|_{\ell^{p}}<\infty$ for some fixed $p \in(0,1)$.
(5.1a) Let $k \in \mathbb{N}$ and assume that $q:[-1,1] \rightarrow X$ is differentiable. Show that for $B \in$ $L\left(X, Y^{\prime}\right)$ bounded

$$
\begin{equation*}
\frac{d^{k}}{d y^{k}}(y B q(y))=y B q^{(k)}(y)+k B q^{(k-1)}(y) \tag{5.1.1}
\end{equation*}
$$

(5.1b) Let $f: U:=[-1,1]^{\mathbb{N}} \rightarrow Y^{\prime}$. Show that for every $\boldsymbol{y} \in U$ there exists a unique $q(\boldsymbol{y}) \in X$ with $A(\boldsymbol{y}) q(\boldsymbol{y})=f(\boldsymbol{y})$.
(5.1c) With the notation $\partial_{\boldsymbol{y}}^{\boldsymbol{\nu}}=\frac{\partial^{|\nu|}}{\partial y_{1}^{\nu_{1}} \partial y_{2}^{\nu_{2}} \ldots}$ assume that $\left\|\left(\partial_{\boldsymbol{y}}^{\boldsymbol{\nu}} f\right)(\mathbf{0})\right\|_{Y^{\prime}} \leq C_{f}|\boldsymbol{\nu}|!\boldsymbol{\beta}_{f}^{\nu}$, where $\boldsymbol{\beta}_{f}=$ $\left(\beta_{f ; j}\right)_{j \in \mathbb{N}} \in \ell^{p}$. Show that there exists a sequence $\gamma=\left(\gamma_{j}\right)_{j \in \mathbb{N}} \in \ell^{p}$ and a constant $C<\infty$ such that

$$
\begin{equation*}
\left\|\left(\partial_{\boldsymbol{y}}^{\nu} q\right)(\mathbf{0})\right\|_{X} \leq C|\boldsymbol{\nu}|!\gamma^{\nu} \tag{5.1.2}
\end{equation*}
$$

for all $\boldsymbol{\nu} \in \mathcal{F}$, where

$$
\begin{equation*}
\mathcal{F}=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}} \mid \sum_{j} \nu_{j}<\infty\right\} \tag{5.1.3}
\end{equation*}
$$

denotes the set of all finitely supported multiindices.
Hint: Proceed as in the proof of Thm. 2.26 of the lecture notes.

Problem 5.2 Complex variable approach

For $\rho>0$ denote $B_{\rho}(z):=\{x \in \mathbb{C}| | x \mid \leq \rho\}$ and let X be a complex Banach space. In the following, if we say that a mapping is holomorphic on $B_{\rho}(z)$, we mean that it is holomorphic on some open superset of $B_{\rho}(z)^{1}$.

[^0](5.2a) Show the Cauchy integral formula in Banach spaces: If $q: B_{\rho}(z) \rightarrow X$ is holomorphic, then
\[

$$
\begin{equation*}
q(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\partial B_{\rho}} \frac{q(\zeta)}{\zeta-z} \mathrm{~d} \zeta \tag{5.2.1}
\end{equation*}
$$

\]

Hint: Use the Cauchy integral formula for functions mapping from $B_{\rho}(z) \rightarrow \mathbb{C}$, the fact that $\mathbf{x}=\mathbf{y} \in X$ if and only if $f(\mathbf{x})=f(\mathbf{y})$ for all $f \in X^{\prime}$, and the fact that $f\left(\int_{\partial B_{\rho}(z)} q(z) \mathrm{d} z\right)=$ $\int_{\partial B_{\rho}(z)} f(q(z)) \mathrm{d} z$ (assume these statements as given, there's no need to prove them).
(5.2b) Let $q: B_{\rho} \rightarrow X$ be a holomorphic function with $\sup _{\zeta \in B_{\rho}}\|q(\zeta)\|_{X} \leq C<\infty$. Show that for every $k \in \mathbb{N}$

$$
\begin{equation*}
\left\|\left.\frac{d^{k}}{d z^{k}} q(z)\right|_{z=0}\right\|_{X} \leq C \frac{k!}{\rho^{k}} . \tag{5.2.2}
\end{equation*}
$$

Hint: Use the Cauchy integral formula.
(5.2c) Let $k \in \mathbb{N}$ and let $q: B_{\rho_{1}}\left(z_{1}\right) \times \cdots \times B_{\rho_{k}}\left(z_{k}\right) \rightarrow X$ holomorphic in all k variables such that $\sup _{\zeta_{j} \in B_{\rho_{j}}\left(z_{j}\right) \forall j}\left\|q\left(\zeta_{1}, \ldots, \zeta_{k}\right)\right\|_{X}=C<\infty$, where $\rho_{j}>0$ for all $j=1, \ldots, k$. Prove that for $\boldsymbol{\nu} \in \mathbb{N}_{0}^{k}$ it holds

$$
\begin{equation*}
\left\|\left.\left(\partial_{\boldsymbol{z}}^{\boldsymbol{\nu}} q\right)(\boldsymbol{z})\right|_{\boldsymbol{z}=\mathbf{0}}\right\|_{X} \leq C \frac{\boldsymbol{\nu}!}{\boldsymbol{\rho}^{\boldsymbol{\nu}}} . \tag{5.2.3}
\end{equation*}
$$

(5.2d) Let $q:[-1,1]^{\mathbb{N}}$ satisfy the following: For some fixed $p \in(0,1)$ there exists a sequence $\left(b_{j}\right)_{j \in \mathbb{N}} \in \ell^{p}$ and $\varepsilon>0$ such that
i) For every sequence $\boldsymbol{\rho}=\left(\rho_{j}\right)_{j \in \mathbb{N}} \in(1, \infty)^{\mathbb{N}}$ of numbers satisfying

$$
\begin{equation*}
\sum_{j \in \mathbb{N}}\left(\rho_{j}-1\right) b_{j}<\varepsilon \tag{5.2.4}
\end{equation*}
$$

the map q allows an extension $\tilde{q}: B_{\boldsymbol{\rho}}:=B_{\rho_{1}}(0) \times B_{\rho_{2}}(0) \times \cdots \rightarrow X$ that is holomorphic as a function of each variable.
ii) There exists $B_{0}<\infty$ such that for every extension \tilde{q} in i) it holds $\sup _{\boldsymbol{z} \in B_{\rho}}\|\tilde{q}(\boldsymbol{z})\|_{X} \leq B_{0}$.

Show that there exists a constant $C<\infty$ and a sequence $\gamma=\left(\gamma_{j}\right)_{j \in \mathbb{N}} \in \ell^{p}$ with $\|\gamma\|_{\ell_{\infty}}<1$ such that for all $\boldsymbol{\nu} \in \mathcal{F}$

$$
\begin{equation*}
\left\|\left(\partial_{\boldsymbol{z}}^{\boldsymbol{\nu}} q\right)(\mathbf{0})\right\|_{X} \leq C|\boldsymbol{\nu}|!\gamma^{\nu} \tag{5.2.5}
\end{equation*}
$$

Hint: Proceed as in the proof of Thm. 2.36 of the lecture notes. Choose ρ in subproblem (5.2c) depending on ν.

Problem 5.3 Affine parametric problem with complex approach

Assuming f in (5.1c) to be independent of \boldsymbol{y}, prove the statement of (5.1c) using (5.2d).

Published on November 23.
To be submitted on December 7 .
Last modified on November 28, 2017

[^0]: ${ }^{1}$ by which we mean complex Fréchet differentiable at every ζ in this superset, i.e. for some $q^{\prime}(\zeta) \in L(\mathbb{C}, X)$ it holds $\left|q(\zeta+h)-q(\zeta)-q^{\prime}(z)(h)\right|=o(|h|)$ as $h \rightarrow 0$ for $h \in \mathbb{C}$. In this situation it is common to identify $q^{\prime}(\zeta) \in L(\mathbb{C}, X)$ with $q^{\prime}(\zeta)(1) \in X$, thus we also write $q^{\prime}(\zeta) \in X$.

