Prof. Ch. Schwab
L. Herrmann, J. Zech

Numerical Analysis of High-Dimensional Problems

ETH Zürich
D-MATH

Exercise 6

Problem 6.1 Analyticity on Ellipse

(6.1a) If

$$
Q_{n}(z)=\frac{1}{2} \int_{-1}^{1} \frac{P_{n}(t)}{z-t} \mathrm{~d} t, \quad n \in \mathbb{N}_{0}
$$

and $w=\frac{1}{2}\left(z+z^{-1}\right)$, then

$$
Q_{n}(w)=\sum_{k=n+1}^{\infty} \frac{\sigma_{n k}}{z^{k}}
$$

where

$$
\left|\sigma_{n k}\right| \leq \pi, \quad n \in \mathbb{N}_{0}, k=n+1, n+2, \ldots .
$$

Hint: Use $\sigma_{n k}=\int_{0}^{\pi} P_{n}(\cos (\theta)) \sin (k \theta) \mathrm{d} \theta$.
(6.1b) Let $f(z)$ be analytic in the interior of $\mathcal{E}_{\rho}, \rho>1$, but not analytic in the interior of any $\mathcal{E}_{\tilde{\rho}}$, $\tilde{\rho}>\rho>1$. Suppose that

$$
f(z)=\sum_{n=0}^{\infty} a_{n} P_{n}(z)
$$

with

$$
a_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) \mathrm{d} x .
$$

Show that

$$
\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} \leq \frac{1}{\rho}
$$

Problem 6.2 Gevrey functions

We say that $g \in C^{\infty}([-1,1])$ is Gevrey regular of index $s \geq 1$ in $(-1,1)$ if there exists a constant $C_{g}>0$ such that

$$
\forall k \in \mathbb{N}_{0}: \quad\left\|f^{(k)}\right\|_{L^{\infty}(-1,1)} \leq C_{g}^{k+1}(k!)^{s}
$$

The set of all functions which are Gevrey regular of index $s \geq 1$ is denoted by $\mathcal{G}^{s}(-1,1)$.
(6.2a) Show that all $g \in \mathcal{G}^{1}(-1,1)$ are analytic on $[-1,1]$.

Hint: Cover $[-1,1]$ with finitely many balls of radius $0<r<C_{g}^{-1}$ and consider in each ball a Taylor series of g in their center.
(6.2b) Show that all $g \in \mathcal{G}^{1}(-1,1)$ are analytic on $\mathcal{E}_{\rho} \subset \mathbb{C}$ for some $\rho>0$. Which is the largest $\rho>0$ such that you can verify this property?
(6.2c) Consider

$$
f(x):= \begin{cases}\exp \left(-x^{-1}\right) & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Show that $f \in \mathcal{G}^{3}(-1,1)$.
Hint: Use the Faa di Bruno Formula in the form:

$$
\begin{equation*}
(f \circ g)^{(n)}(x)=\sum_{\pi \in \Pi} f^{(|\pi|)}(g(x)) \prod_{B \in \pi} g^{|B|}(x) \tag{6.2.1}
\end{equation*}
$$

where Π denotes the set of all 2^{n} partitions of $\{1, \ldots, n\}$.
REMARK: In fact it holds $f \in \mathcal{G}^{2}(-1,1)$, prove it if you can.
(6.2d) Show that f is not analytic at $x=0$.

Published on December 14.
To be submitted on December 21.
Last modified on December 13, 2017

