Mathematical Finance

Exercise sheet 2

Exercise 2.1 Let X and Y be random variables with $E[X | Y] \stackrel{a.s.}{=} Y$ and $E[Y | X] \stackrel{a.s.}{=} X$.

- (a) Assume that X and Y are square-integrable and prove that $X \stackrel{a.s.}{=} Y$.
- (b) Assume that X and Y are integrable and prove that $X \stackrel{a.s.}{=} Y$.

Exercise 2.2 Let S denote the family of simple predictable processes, i.e.,

$$H_0 \mathbb{1}_{\{0\}} + \sum_{i=1}^n H_i \mathbb{1}_{]\tau_i, \tau_{i+1}]}$$

for stopping times $0 = \tau_0 < \tau_1 < \cdots < \tau_{i+1} < \infty$ and bounded \mathcal{F}_{τ_i} -measurable H_i for $i = 0, 1, \ldots, n+1$, \mathbb{D} denote the family of adapted càdlàg processes and \mathbb{L} denote the family of adapted càglàd processes on $[0, \infty[$. We endow \mathbb{D} and \mathbb{L} with the topology of convergence uniformly on compacts in probability generated by the metric

$$d(X,Y) := \sum_{k=1}^{\infty} \mathbb{E}[2^{-k} \wedge \sup_{s \leq k} |X_s - Y_s|].$$

Moreover, let the space of measurable random variables L^0 be endowed with the topology generated by the convergence in probability. Show that

- (a) The vector spaces \mathbb{L} and \mathbb{D} are complete.
- (b) The continuity of $J_X : \mathbb{S} \to \mathbb{D}$ with $J_X(H) := H_0 X_0 + \sum_{i=1}^n H_i(X_{\tau_{i+1} \wedge t} X_{\tau_i \wedge t})$, for $H \in \mathbb{S}$, in the u.c.p. metric on \mathbb{S} , i.e., that X is a good integrator, is equivalent to that, for every fixed $t \in [0, \infty[$, the mapping $I_{X^t} : \mathbb{S} \to L^0$ with $I_{X^t}(H) := J_X(H)_t$, for $H \in \mathbb{S}$, is continuous in the uniform norm metric on \mathbb{S} .

Exercise 2.3 (Python) Let B be a Brownian motion modeling a stock.

(a) Compute the expected value of an European put option $(K - B_t)^+$ with the strike price K = 1 at the maturity t = 100.

In (b) and (c), we consider the following trading strategy. Start with one stock, sell it if the price reaches 2, after this, buy a new stock if the price falls below 1 after which sell the stock if the price reaches 2, and keep repeating this procedure.

- (b) Compute the expected number of times one has sold a stock prior to t = 100.
- (c) Plot the distribution and compute the expected value of the portfolio at t = 100.