Mathematical Finance

Exercise sheet 14

Exercise 14.1 Let S be a semimartingale satisfying NFLVR. Assume that S is complete in the sense that there exists a unique equivalent σ -martingale measure Q for S. Let $U : (0, \infty) \to \mathbb{R}$ be a utility function satisfying Inada conditions and such that $u(x) < \infty$ for some (and hence all) $x \in (0, \infty)$. For x > 0 and y > 0, define the sets

$$\mathcal{C}(x) := \{ X_T \in L^0_+(\Omega, \mathcal{F}, P) : X_T \leq x + (H \cdot S)_T \text{ for admissible } H \}$$

$$\mathcal{D}(y) := y \mathcal{D}(1) := y \{ Y_T \in L^0_+(\Omega, \mathcal{F}, P) : E[X_T Y_T] \leq 1 \ \forall X_T \in \mathcal{C}(1) \}.$$

(a) Fix y > 0. Show that

$$Y_T \leq y \frac{dQ}{dP}$$
 P-a.s. for all $Y_T \in \mathcal{D}(y)$,

where $\frac{dQ}{dP}$ denotes the density of Q with respect to P on \mathcal{F}_T . Deduce that

$$v(y) = \inf_{Y_T \in \mathcal{D}(y)} E[V(Y_T)] = E\left[V\left(y\frac{dQ}{dP}\right)\right],$$

where $E[V(Y_T)] := +\infty$ if $V^+(Y_T) \notin L^1(P)$.

(b) Let $y_0 := \inf\{y > 0 : v(y) < \infty\}$. Show that the function v is in $C^1(y_0, \infty)$ and satisfies

$$v'(y) = E\left[\frac{dQ}{dP}V'\left(y\frac{dQ}{dP}\right)\right], \quad y \in (y_0,\infty).$$

(c) Set $x_0 := \lim_{y \downarrow \downarrow y_0} -v'(y)$. Fix $x \in (0, x_0)$. Let $\hat{y}(x) \in (y_0, \infty)$ be the unique number such that $-v'(\hat{y}(x)) = x$. Show that $\hat{X}_T := (U')^{-1} \left(\hat{y}(x) \frac{dQ}{dP}\right)$ is the unique solution to the primal problem

$$u(x) = \sup_{X_T \in \mathcal{C}(x)} E[U(X_T)].$$

Exercise 14.2 Give an example of the situation on which there exists a dual optimizer $\underset{Y_T \in \mathcal{D}(1)}{\operatorname{argmin}} E[V(Y_T)]$ in $\mathcal{D}(1)$, but it is not of the form $\frac{dQ}{dP}$ for any $\mathrm{E}\sigma\mathrm{MM} Q$.

Exercise 14.3 Let L^0_+ denote the collection of all nonnegative random variables and L^0_{++} be the

family of all strictly positive random variables (see Exercise Sheet 3 for the relevant definitions). Assume that $\mathcal{C} \subset L^0_+$ is a convex set satisfying $L^0_{++} \cap \mathcal{C} \neq \emptyset$ and closed in probability.

- (a) Show that if there exists an $\hat{f} \in L^0_{++} \cap \mathcal{C}$ such that $E[f/\hat{f}] \leq 1$ for all $f \in \mathcal{C}$, then \mathcal{C} is bounded in probability, i.e., $\limsup_{M \to \infty} \sup_{f \in \mathcal{C}} P[f \geq M] = 0$.
- (b) Now we assume that \mathcal{C} is bounded in probability. Show that its solid hull

$$\mathcal{C}' := \{ f \in L^0_+ | f \leqslant h \text{ for some } h \in \mathcal{C} \}$$

is also closed in probability, convex and bounded in probability.

Updated: December 22, 2017

1/2

- (c) Show that if C = C' and $1 \in C$ (here 1 is the constant random variable X = 1), then for all $n \ge 1$, the set $C^n := \{f \in C | f \le n\}$ is nonempty and the utility maximization problem $\sup_{f \in C^n} E[\log f]$ has a maximizer f^n satisfying $E[\log f] = \sup_{f \in C} E[\log f] \in (-\infty, +\infty)$.
- (d) Keeping all assumptions from **c**) above and still denote by f^n a maximizer for $\sup_{f \in \mathcal{C}^n} E[\log f]$. Define for each $\epsilon \in (0, \frac{1}{2}]$ and $f \in \mathcal{C}^n$ a quantity

$$\Delta_{\epsilon}(f|f^n) := \frac{\log\left((1-\epsilon)f^n + \epsilon f\right) - \log f^n}{\epsilon}$$

Use the elementary inequality $\log y - \log x \leq \frac{y-x}{x}$ for all 0 < x < y to show that $\Delta_{\epsilon}(f|f^n) \geq -2$ for all $\epsilon \in (0, \frac{1}{2}]$ and for all $f \in \mathcal{C}^n$. Then show that $E[\frac{f}{f^n}] \leq 1$ for all $f \in \mathcal{C}^n$.

- (e) Now for each n we have a maximizer f^n for $\sup_{f \in \mathcal{C}^n} E[\log f]$. Apply the Komlos Lemma for the sequence (f^n) we get an $\hat{f} \in \mathcal{C}$. Show that this \hat{f} satisfies that $1/\hat{f} \in L^0_{++}$ and $E[\frac{f}{\hat{f}}] \leq 1$ for all $f \in \mathcal{C}$.
- (f) Now we assume neither $1 \in \mathcal{C}$ nor $\mathcal{C} = \mathcal{C}'$, but still assume that \mathcal{C} is bounded in probability. Show that in this case we still have an $\hat{f} \in \mathcal{C}$ such that $\frac{1}{\hat{f}} \in L^0_{++}$ and $E[\frac{f}{\hat{f}}] \leq 1$ for all $f \in \mathcal{C}$. We call \hat{f} the static numéraire in \mathcal{C} .

Exercise 14.4 Let \mathcal{X} be a set of semimartingales defined on a finite time horizon [0, T]. We call \mathcal{X} a *wealth process set* if it satisfies all the following conditions:

- 1. Each $X \in \mathcal{X}$ is nonnegative, adapted, RCLL and $X_0 = 1$.
- 2. There exists a strictly positive process $\overline{X} \in \mathcal{X}$.
- 3. \mathcal{X} is convex, i.e., for $X^1, X^2 \in \mathcal{X}$ and $\lambda \in [0, 1], (1 \lambda)X^1 + \lambda X^2 \in \mathcal{X}$.
- 4. \mathcal{X} is *decomposable*, that is, for all $t \in [0, T]$ and all $A \in \mathcal{F}_t$, for all $X \in \mathcal{X}$ and all strictly positive $X' \in \mathcal{X}$, the process

$$1_{A^c}X_s + 1_A \frac{X'_{t \vee s}}{X'_t} X_{t \wedge s} = \begin{cases} X_s(\omega), \text{ if } s \leq t, \text{ or } \omega \in A^c; \\ \frac{X_t(\omega)}{X'_t(\omega)} X'_s(\omega), \text{ if } s > t \text{ and } \omega \in A \end{cases}$$

is also an element of \mathcal{X} .

- (a) Give an economic interpretation of the decomposability in words.
- (b) Let $\mathcal{X}^1 = 1 + G(\Theta^1_{adm}(S))$. Show that \mathcal{X}^1 is a wealth process set.
- (c) We call a wealth process set \mathcal{X} satisfies the NUPBR condition if the set $\mathcal{X}_T := \{X_T | X \in \mathcal{X}\}$ is bounded in probability. Show that if a wealth process set \mathcal{X} satisfies NUPBR and \mathcal{X}_T is closed in probability, then there exists an $\hat{X} \in \mathcal{X}$ such that $\frac{1}{\hat{X}}$ is strictly positive and $\frac{X}{\hat{X}}$ is a supermartingale for all $X \in \mathcal{X}$.