Mathematical Finance

Exercise sheet 14

Exercise 14.1 Let S be a semimartingale satisfying NFLVR. Assume that S is complete in the sense that there exists a unique equivalent σ-martingale measure Q for S. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be a utility function satisfying Inada conditions and such that $u(x)<\infty$ for some (and hence all) $x \in(0, \infty)$. For $x>0$ and $y>0$, define the sets

$$
\begin{aligned}
\mathcal{C}(x) & :=\left\{X_{T} \in L_{+}^{0}(\Omega, \mathcal{F}, P): X_{T} \leqslant x+(H \cdot S)_{T} \text { for admissible } H\right\} \\
\mathcal{D}(y) & :=y \mathcal{D}(1):=y\left\{Y_{T} \in L_{+}^{0}(\Omega, \mathcal{F}, P): E\left[X_{T} Y_{T}\right] \leqslant 1 \forall X_{T} \in \mathcal{C}(1)\right\}
\end{aligned}
$$

(a) Fix $y>0$. Show that

$$
Y_{T} \leqslant y \frac{d Q}{d P} \quad P \text {-a.s. for all } Y_{T} \in \mathcal{D}(y)
$$

where $\frac{d Q}{d P}$ denotes the density of Q with respect to P on \mathcal{F}_{T}. Deduce that

$$
v(y)=\inf _{Y_{T} \in \mathcal{D}(y)} E\left[V\left(Y_{T}\right)\right]=E\left[V\left(y \frac{d Q}{d P}\right)\right]
$$

where $E\left[V\left(Y_{T}\right)\right]:=+\infty$ if $V^{+}\left(Y_{T}\right) \notin L^{1}(P)$.
(b) Let $y_{0}:=\inf \{y>0: v(y)<\infty\}$. Show that the function v is in $C^{1}\left(y_{0}, \infty\right)$ and satisfies

$$
v^{\prime}(y)=E\left[\frac{d Q}{d P} V^{\prime}\left(y \frac{d Q}{d P}\right)\right], \quad y \in\left(y_{0}, \infty\right)
$$

(c) Set $x_{0}:=\lim _{y \downarrow y_{0}}-v^{\prime}(y)$. Fix $x \in\left(0, x_{0}\right)$. Let $\widehat{y}(x) \in\left(y_{0}, \infty\right)$ be the unique number such that $-v^{\prime}(\widehat{y}(x))=x$. Show that $\widehat{X}_{T}:=\left(U^{\prime}\right)^{-1}\left(\widehat{y}(x) \frac{d Q}{d P}\right)$ is the unique solution to the primal problem

$$
u(x)=\sup _{X_{T} \in \mathcal{C}(x)} E\left[U\left(X_{T}\right)\right] .
$$

Exercise 14.2 Give an example of the situation on which there exists a dual optimizer argmin $E\left[V\left(Y_{T}\right)\right]$

$$
Y_{T} \in \mathcal{D}(1)
$$

in $\mathcal{D}(1)$, but it is not of the form $\frac{d Q}{d P}$ for any $\operatorname{E} \sigma \mathrm{MM} Q$.
Exercise 14.3 Let L_{+}^{0} denote the collection of all nonnegative random variables and L_{++}^{0} be the family of all strictly positive random variables (see Exercise Sheet 3 for the relevant definitions). Assume that $\mathcal{C} \subset L_{+}^{0}$ is a convex set satisfying $L_{++}^{0} \cap \mathcal{C} \neq \varnothing$ and closed in probability.
(a) Show that if there exists an $\hat{f} \in L_{++}^{0} \cap \mathcal{C}$ such that $E[f / \hat{f}] \leqslant 1$ for all $f \in \mathcal{C}$, then \mathcal{C} is bounded in probability, i.e., $\limsup _{M \rightarrow \infty} \sup _{f \in \mathcal{C}} P[f \geqslant M]=0$.
(b) Now we assume that \mathcal{C} is bounded in probability. Show that its solid hull

$$
\mathcal{C}^{\prime}:=\left\{f \in L_{+}^{0} \mid f \leqslant h \text { for some } h \in \mathcal{C}\right\}
$$

is also closed in probability, convex and bounded in probability.
(c) Show that if $\mathcal{C}=\mathcal{C}^{\prime}$ and $1 \in \mathcal{C}$ (here 1 is the constant random variable $X=1$), then for all $n \geqslant 1$, the set $\mathcal{C}^{n}:=\{f \in \mathcal{C} \mid f \leqslant n\}$ is nonempty and the utility maximization problem $\sup _{f \in \mathcal{C}^{n}} E[\log f]$ has a maximizer f^{n} satisfying $E[\log f]=\sup _{f \in \mathcal{C}} E[\log f] \in(-\infty,+\infty)$.
(d) Keeping all assumptions from \mathbf{c}) above and still denote by f^{n} a maximizer for $\sup _{f \in \mathcal{C}^{n}} E[\log f]$. Define for each $\epsilon \in\left(0, \frac{1}{2}\right]$ and $f \in \mathcal{C}^{n}$ a quantity

$$
\Delta_{\epsilon}\left(f \mid f^{n}\right):=\frac{\log \left((1-\epsilon) f^{n}+\epsilon f\right)-\log f^{n}}{\epsilon}
$$

Use the elementary inequality $\log y-\log x \leqslant \frac{y-x}{x}$ for all $0<x<y$ to show that $\Delta_{\epsilon}\left(f \mid f^{n}\right) \geqslant-2$ for all $\epsilon \in\left(0, \frac{1}{2}\right]$ and for all $f \in \mathcal{C}^{n}$. Then show that $E\left[\frac{f}{f^{n}}\right] \leqslant 1$ for all $f \in \mathcal{C}^{n}$.
(e) Now for each n we have a maximizer f^{n} for $\sup _{f \in \mathcal{C}^{n}} E[\log f]$. Apply the Komlos Lemma for the sequence $\left(f^{n}\right)$ we get an $\hat{f} \in \mathcal{C}$. Show that this \hat{f} satisfies that $1 / \hat{f} \in L_{++}^{0}$ and $E\left[\frac{f}{f}\right] \leqslant 1$ for all $f \in \mathcal{C}$.
(f) Now we assume neither $1 \in \mathcal{C}$ nor $\mathcal{C}=\mathcal{C}^{\prime}$, but still assume that \mathcal{C} is bounded in probability. Show that in this case we still have an $\hat{f} \in \mathcal{C}$ such that $\frac{1}{\hat{f}} \in L_{++}^{0}$ and $E\left[\frac{f}{f}\right] \leqslant 1$ for all $f \in \mathcal{C}$. We call \hat{f} the static numéraire in \mathcal{C}.

Exercise 14.4 Let \mathcal{X} be a set of semimartingales defined on a finite time horizon $[0, T]$. We call \mathcal{X} a wealth process set if it satisfies all the following conditions:

1. Each $X \in \mathcal{X}$ is nonnegative, adapted, RCLL and $X_{0}=1$.
2. There exists a strictly positive process $\bar{X} \in \mathcal{X}$.
3. \mathcal{X} is convex, i.e., for $X^{1}, X^{2} \in \mathcal{X}$ and $\lambda \in[0,1],(1-\lambda) X^{1}+\lambda X^{2} \in \mathcal{X}$.
4. \mathcal{X} is decomposable, that is, for all $t \in[0, T]$ and all $A \in \mathcal{F}_{t}$, for all $X \in \mathcal{X}$ and all strictly positive $X^{\prime} \in \mathcal{X}$, the process

$$
1_{A^{c}} X_{s}+1_{A} \frac{X_{t \vee s}^{\prime}}{X_{t}^{\prime}} X_{t \wedge s}=\left\{\begin{array}{l}
X_{s}(\omega), \text { if } s \leqslant t, \text { or } \omega \in A^{c} \\
\frac{X_{t}(\omega)}{X_{t}^{\prime}(\omega)} X_{s}^{\prime}(\omega), \text { if } s>t \text { and } \omega \in A
\end{array}\right.
$$

is also an element of \mathcal{X}.
(a) Give an economic interpretation of the decomposability in words.
(b) Let $\mathcal{X}^{1}=1+G\left(\Theta_{a d m}^{1}(S)\right)$. Show that \mathcal{X}^{1} is a wealth process set.
(c) We call a wealth process set \mathcal{X} satisfies the NUPBR condition if the set $\mathcal{X}_{T}:=\left\{X_{T} \mid X \in \mathcal{X}\right\}$ is bounded in probability. Show that if a wealth process set \mathcal{X} satisfies NUPBR and \mathcal{X}_{T} is closed in probability, then there exists an $\widehat{X} \in \mathcal{X}$ such that $\frac{1}{\widehat{X}}$ is strictly positive and $\frac{X}{\widehat{X}}$ is a supermartingale for all $X \in \mathcal{X}$.

