Mathematical Finance

Solution sheet 2

Solution 2.1

(a) By the tower property of conditional expectation and the assumption $E[Y \mid X]=X$ a.s., we have

$$
E[X(X-Y)]=E[E[X(X-Y) \mid X]]=E\left[X^{2}-X E[Y \mid X]\right]=0
$$

Remark that here we do need the fact that both X and Y are square-integrable. Similarly, we get

$$
E[Y(Y-X)]=0
$$

Consequently,

$$
E\left[(X-Y)^{2}\right]=E[X(X-Y)]-E[Y(X-Y)]=0
$$

which is sufficient to conclude that $X=Y$ a.s.. Indeed, for any non-negative random variable Z with $E[Z]=0$, we have that $Z=0$ a.s.. Choosing $Z:=(X-Y)^{2}$ yields the desired result.
(b) We define $f(x)=\arctan (x)$ for all $x \in \mathbb{R}$. Provided by the fact that the function f is bounded, we have

$$
E[f(X)(X-Y)]=E[E[f(X) X-f(X) Y \mid X]]=E[f(X) X]-E[f(X) X]=0
$$

Similarly,

$$
E[f(Y)(Y-X)]=0
$$

Consequently,

$$
E[(f(X)-f(Y))(X-Y)]=E[(f(X)(X-Y)]-E[f(Y)(X-Y)]=0
$$

Since the function f is increasing, we have that $Z:=(f(X)-f(Y))(X-Y) \geqslant 0$ a.s. and we may conclude as above that $X=Y$ a.s.

Solution 2.2 Remark that, for $\left(X^{n}\right)_{n \in \mathbb{N}} \subset \mathbb{D}$, if

$$
P\left(\sup _{s \leqslant t}\left|X_{s}^{n}-X_{s}\right|>K\right) \rightarrow 0
$$

as $n \rightarrow \infty$, for every $t, K>0$, then

$$
E\left[M \wedge \sup _{s \leqslant t}\left|X_{s}^{n}-X_{s}\right|\right] \rightarrow 0
$$

as $n \rightarrow \infty$, for every $M>0$, so, the convergence in the metric d is indeed equivalent to the uniform convergence on compacts in probability.
(a) Let $\left(X^{n}\right)_{n \in \mathbb{N}}$ of $\mathbb{D}($ or $\mathbb{L})$ be a Cauchy sequence in the u.c.p. metric d, i.e., $d\left(X^{m}, X^{n}\right) \rightarrow$ 0 as $m, n \rightarrow 0$. We may extract a subsequence $Y^{k}=X^{n_{k}}$ such that

$$
d\left(Y^{m}, Y^{n}\right)=\sum_{k=1}^{\infty} E\left[2^{-k} \wedge \sup _{t \leqslant k}\left|Y_{t}^{m}-Y_{t}^{n}\right|\right] \leqslant 2^{-n}
$$

for all $m \geqslant n$. Then, for non-negative summands, we have

$$
E\left[\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} 2^{-k} \wedge \sup _{t \leqslant k}\left|Y_{t}^{n+1}-Y_{t}^{n}\right|\right]=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} E\left[2^{-k} \wedge \sup _{t \leqslant k}\left|Y_{t}^{n+1}-Y_{t}^{n}\right|\right] \leqslant 1
$$

and we conclude that the sum inside the expectation on the left is finite almost surely, so, almost surely, the paths of the sequence $\left(X^{n}\right)_{n \in \mathbb{N}}$ are Cauchy convergent in the convergence of uniformly on compacts along a subsequence $\left(Y^{n}\right)_{n \in \mathbb{N}}$ and there is an almost surely unique limit X. The limit is measurable and we have

$$
\begin{equation*}
X_{t}=\lim _{n \rightarrow \infty} Y_{t}^{n} \tag{1}
\end{equation*}
$$

for every $t \in \mathbb{R}_{+}$, so, the process X is adapted. Moreover, due to the uniform convergence, we have $X_{t+}=\lim _{n \rightarrow \infty} Y_{t+}^{n}$ and $X_{t-}=\lim _{n \rightarrow \infty} Y_{t-}^{n}$, so, by (1), if $\left(X^{n}\right)_{n \in \mathbb{N}}$ are càdlàg (resp. càglàd), then X is càdlàg (resp. càglàd).
(b) Since J_{X} and $I_{X^{t}}, t \in[0, \infty[$, are linear mappings between linear topological spaces, it suffices to establish the continuity at the origin of \mathbb{S}. Let X be a good integrator and $H^{n} \rightarrow 0$ uniformly. Then, as $H^{n} \xrightarrow{\text { u.c.p. }} 0$, by the definition of a good integrator, we have $J_{X}\left(H^{n}\right) \xrightarrow{\text { u.c.p. }} 0$, so, in particular, for any $t \in\left[0, \infty\left[\right.\right.$, we have $I_{X^{t}}\left(H^{n}\right) \rightarrow 0$ in probability as claimed. For contrary, assume that $I_{X^{t}}$ is continuous in the uniform norm metric for every $t \in\left[0, \infty\left[\right.\right.$ and let $H^{n} \xrightarrow{\text { u.c.p. }} 0$. For every $K, \varepsilon>0$, we find $\delta>0$ such that $P\left(\sup _{s \leqslant t}\left|J_{X}(H)_{s}\right|>K\right) \leqslant \varepsilon / 2$ whenever $\|H\|_{\infty} \leqslant \delta$. For each $n \in \mathbb{N}$, define $\tilde{H}^{n}:=H^{n} \mathbb{1}_{\left[0, \tau_{n}\right]} 1_{\left\{\tau_{n}>0\right\}}$ for $\tau_{n}:=\inf \left\{t \in \mathbb{R}_{+}:\left|H_{t}^{n}\right|>\delta\right\}$. We have $\widetilde{H}^{k} \in \mathbb{S}$ and $\left\|\tilde{H}^{k}\right\|_{\infty} \leqslant \delta$ by left continuity. Moreover, we have $J_{X}\left(\tilde{H}^{n}\right)_{t}=J_{X}\left(H^{n}\right)_{t}$ on $\left\{t \leqslant \tau_{n}\right\}$ for every $n \in \mathbb{N}$, so, we get

$$
\begin{aligned}
P\left(\sup _{s \leqslant t}\left|J_{X}\left(H^{n}\right)_{s}\right|>K\right) & \leqslant P\left(\sup _{s \leqslant t}\left|J_{X}\left(\widetilde{H}^{n}\right)_{s}\right|>K\right)+P\left(\tau_{n}<t\right) \\
& \leqslant \varepsilon / 2+P\left(\sup _{s \leqslant t}\left|H_{s}^{n}\right|>K\right)<\varepsilon
\end{aligned}
$$

for n sufficiently large, since $\lim _{n \rightarrow \infty} P\left(\sup _{s \leqslant t}\left|H_{s}^{n}\right|>K\right)=0$. So, J_{X} is continuous in the u.c.p. topology on \mathbb{S}, i.e., X is a good integrator.

Solution 2.3

```
import numpy
from pylab import hist, show
from math import ceil
from brownian import brownian
def main():
    # The Wiener process parameter.
    delta = 1
    # Total time.
    T = 100.0
    # Number of steps.
    N = 500
    # Time step size
    dt = T/N
```

```
# Number of realizations to generate.
m = 5000
# Create an empty array to store the realizations.
x = numpy.empty((m,N+1))
# Initial values of x.
x[:, 0] = 0
# Simulate the paths
brownian(x[:,0], N, dt, delta, out=x[:,1:])
# Define the put option
def f(x):
    return 1-x if x < 1 else 0
# Compute and print the value of the put
f = numpy.vectorize(f)
p = f(x[:,N]).mean(axis=0)
print 'Value of the put: %f' % p
# Evaluate the strategy
a = numpy.empty((m,N+1))
a[:,0]=-1
b = numpy.empty ((m,N+1))
h = True
for i in range(m):
    for j in range(N-1):
        if h == True:
            if x[i,j] >= 2:
                b[i,j] = 1
                h = False
        else:
            if x[i,j] <= 1:
                a[i,j] = -1
                h = True
    if h == True:
        b[i,N]=1
# Compute and print the # of upcrossings
u = numpy.sum(b[:,:N-1])/m
print 'Upcrossings: %f' % u
# Compute and print the value of the portfolio
v = numpy.mean(numpy.sum(numpy.multiply(x,b+a),axis=1))
print 'Value of the portfolio: %f' % v
# Check
print "Doob's upcrossing inequality is: %r" % (u <= p + v)
# Plot the distribution of the portfolio value
hist(numpy.sum(numpy.multiply(x,b+a),axis=1), bins='auto')
show()
```

```
if __name__ == "__main__":
    main()
```

