Mathematical Finance

Solution sheet 3

Solution 3.1 Let \mathcal{C} be a class of processes. We write $X \in \mathcal{C}_{l o c}$ if there exists a sequence $\left(\tau_{n}\right)$ of stopping times with $\tau_{n} \uparrow \infty$ such that for each n the stopped process $X^{\tau_{n}}$ is in \mathcal{C}.
(a) Every good integrator is a locally good integrator; choose a localizing sequence $\tau_{n} \equiv \infty$. For the converse, let $\left(\tau^{n}\right)$ be a localizing sequence for X and choose n such that $P\left(\tau^{n} \leqslant t\right)<\varepsilon / 2$. Then, for $\left(H^{k}\right) \subset \mathbb{S}$ such that $\left\|H^{k}\right\|_{\infty} \rightarrow 0$, for any $K>0$, we have

$$
\begin{aligned}
P\left(\left|J_{X}\left(H^{k}\right)_{t}\right|>K\right) & \leqslant P\left(\left|J_{X^{\tau^{n}}}\left(H^{k}\right)_{t}\right|>K\right)+P\left(\tau^{n} \leqslant t\right) \\
& \leqslant P\left(\left|J_{X^{\tau^{n}}}\left(H^{k}\right)_{t}\right|>K\right)+\varepsilon / 2<\varepsilon
\end{aligned}
$$

for k sufficiently large, since $X^{\tau^{n}}$ is a good integrator.
(b) Since $E Y_{1}=1 \neq E Y_{0}=0$, the process Y is not a martingale. To show that it is a local martingale, choose $\tau_{n}=\inf \left\{t \geqslant 0:\left|Y_{t}\right| \geqslant n\right\} \wedge n, n \geqslant 1$. Let $s<t<1$ and $A \in \mathcal{F}_{s}$. We have

$$
E\left[\mathbb{1}_{A}\left(Y_{t}^{\tau_{n}}-Y_{s}^{\tau_{n}}\right)\right]=E\left[\mathbb{1}_{A}\left(Y_{\left(\tau^{n} \wedge t\right) \vee s}-Y_{s}\right)\right] .
$$

By the optional stopping theorem, $\left(Y_{t}^{\tau_{n}}\right)_{t \geqslant 0}$ is a uniformly bounded martingale on $t<1$. Moreover, $Y^{\tau_{n}}$ is continuous at $t=1$, and constant on $t \geqslant 1$. Therefore, $\left(Y_{t}^{\tau_{n}}\right)_{t \geqslant 0}$ is martingale, for every $n \geqslant 1$. This shows that Y is a local martingale.

Solution 3.2

(a) The family of càglàd functions $L([0,1])$ equipped with the uniform norm is a Banach space. For $y \in L([0,1])$, let

$$
T_{n}(y):=\sum_{t_{k}^{n}, t_{k+1}^{n} \in \pi^{n}} y\left(t_{k}^{n}\right)\left(x\left(t_{k+1}^{n}\right)-x\left(t_{k}^{n}\right)\right) .
$$

For each n, we find $y \in L([0,1])$ such that $y\left(t_{k}^{n}\right)=\operatorname{sign}\left(x\left(t_{k+1}^{n}\right)-x\left(t_{k}^{n}\right)\right)$ and $\|y\|_{\infty}=1$. For such y we have

$$
T_{n}(y)=\sum_{t_{k}^{n}, t_{k+1}^{n} \in \pi^{n}}\left|x\left(t_{k+1}^{n}\right)-x\left(t_{k}^{n}\right)\right| .
$$

Therefore

$$
\left\|T_{n}\right\| \geqslant \sum_{t_{k}^{n}, t_{k+1}^{n} \in \pi^{n}}\left|x\left(t_{k+1}^{n}\right)-x\left(t_{k}^{n}\right)\right|
$$

for each n, and

$$
\sup _{n}\left\|T_{n}\right\| \geqslant \text { the total variation of } x \text {. }
$$

On the other hand, for each $y \in L([0,1]), \lim _{n \rightarrow \infty} T_{n}(y)$ exists and therefore $\sup _{n}\left|T_{n}(y)\right|<\infty$. By Banach-Steinhaus theorem, we have $\sup _{n}\left\|T_{n}\right\|<\infty$, and the total variation of x is finite.
(b) Recall that a sequence of partitions tending to identity consist collections of stopping times $\Pi^{n}:=\left\{0=\tau_{0}^{n}<\cdots<\tau_{k}^{n}<\infty\right.$ such that $\sup _{k}\left|\tau_{k+1}^{n}-\tau_{k}^{n}\right| \rightarrow 0$ and $\sup _{k} \tau_{k}^{n} \rightarrow \infty$ as $\left.n \rightarrow \infty\right\}$. For such Π^{n} and $Z \in \mathbb{L}$, denote

$$
\left.Z^{\Pi^{n}}:=\sum_{\tau_{k}^{n}, \tau_{k+1}^{n} \in \Pi^{n}} Z_{\tau_{k}^{n}} \mathbb{1}_{]} \tau_{k}^{n}, \tau_{k+1}^{n}\right]
$$

Since \mathbb{S} is an u.c.p. dense subset of \mathbb{L} and $Y \in \mathbb{L}$, we find a sequence $\left(Y^{m}\right)$ of bounded simple processes such that $Y^{m} \xrightarrow{\text { u.c.p. }} Y$. We have

$$
\left(\left(Y-Y^{\Pi^{n}}\right) \bullet X\right)=\left(\left(Y-Y^{m}\right) \bullet X\right)+\left(\left(Y^{m}-\left(Y^{m}\right)^{\Pi^{n}}\right) \bullet X\right)+\left(\left(\left(Y^{m}\right)^{\Pi^{n}}-Y^{\Pi^{n}}\right) \bullet X\right)
$$

Since $d\left(\left(Y^{m}\right)^{\Pi^{n}}, Y^{\Pi^{n}}\right) \leqslant d\left(Y^{m}, Y\right)$ for all n, by the continuity of $Y \mapsto(Y \bullet X)$, we have $\left(\left(Y^{m}-Y\right) \bullet X\right) \xrightarrow{\text { u.c.p. }} 0$ and $\left(\left(\left(Y^{m}\right)^{\Pi^{n}}-Y^{\Pi^{n}}\right) \bullet X\right) \xrightarrow{\text { u.c.p. }} 0$ uniformly in n as $m \rightarrow \infty$. For, m and ω fixed, let

$$
Y_{s}^{m}(\omega)=Y_{0}^{m}(\omega)+\sum_{i=1}^{M} Y_{\sigma_{i}(\omega)} 1_{] \sigma_{i}(\omega), \sigma_{i+1}(\omega)\right]}(s)
$$

Then

$$
\left(Y^{m}\right)_{s}^{\Pi^{n}}(\omega):=Y_{0}^{m}(\omega)+\sum_{j=1}^{k} Y_{\tau_{j}^{n}(\omega)}^{m} 1_{\left.1 \tau_{j}^{n}(\omega), \tau_{j+1}^{n}(\omega)\right]}(s)
$$

and denote $t_{i}^{n}(\omega):=\inf \left\{\tau_{k}^{n}(\omega): \tau_{k}^{n}(\omega)>\sigma_{i}(\omega)\right\}$ for each $i=1, \ldots, M$. We have

$$
\sup _{s \leqslant t}\left|\left(\left(Y^{m}-\left(Y^{m}\right)^{\Pi^{n}}\right) \bullet X\right)_{s}(\omega)\right| \leqslant \sum_{i=1}^{M}\left|Y_{\sigma_{i+1}(\omega)}(\omega)-Y_{\sigma_{i}(\omega)}(\omega)\right| \sup _{\sigma_{i}(\omega)<s \leqslant t_{i}^{n}(\omega)}\left|X_{s}(\omega)\right|
$$

By the right-continuity of $X(\omega)$ and the fact that Y^{m} is bounded simple, for any $t>0$, we have

$$
\sup _{s \leqslant t}\left|\left(\left(Y^{m}-\left(Y^{m}\right)^{\Pi^{n}}\right) \bullet X\right)_{s}\right|(\omega) \rightarrow 0 \text { as } n \rightarrow \infty
$$

since the $\operatorname{mesh}_{\sup _{k}}\left|\tau_{k+1}^{n}(\omega)-\tau_{k}^{n}(\omega)\right|$ and consequently $\sup _{i}\left|t_{i}^{n}(\omega)-\sigma_{i}(\omega)\right|$ tends to zero when $n \rightarrow \infty$. In particular, for any m, we have

$$
\left(\left(Y^{m}-\left(Y^{m}\right)^{\Pi^{n}}\right) \bullet X\right) \xrightarrow{\text { u.c.p. }} 0
$$

as $n \rightarrow \infty$.
Solution 3.3 For a process Z with dynamics $d Z=Z_{-} d X$, the continuous part of the quadratic variation satisfies $d[Z, Z]^{c}=Z_{-} d[X, X]^{c}$ and the jumps are $\Delta Z=Z_{-} \Delta X$. By Itô's formula,

$$
\begin{align*}
d \log (Z) & =Z_{-}^{-1} d Z-\frac{1}{2} Z_{-}^{-2} d[Z, Z]^{c}+\left(\Delta \log (Z)-Z_{-}^{-1} \Delta Z\right) \\
& =d X-\frac{1}{2} d[X, X]^{c}+(\log (1+\Delta X)-\Delta X) \tag{1}
\end{align*}
$$

where we did use the identity

$$
\Delta \log (Z)=\log \left(1+Z_{-}^{-1} \Delta Z\right)=\log (1+\Delta X)
$$

Integrating (1) gives

$$
\log \left(Z_{t}\right)=X_{t}-X_{0}-\frac{1}{2}[X, X]_{t}^{c}+\sum_{s \leqslant t}\left(\log \left(1+\Delta X_{s}\right)-\Delta X_{s}\right)
$$

Exponenting gives

$$
Z_{t}=\exp \left(X_{t}-\frac{1}{2}[X, X]_{t}\right) \Pi_{s \leqslant t}\left(1+\Delta X_{s}\right) \exp \left(-\Delta X_{s}+\frac{1}{2}\left(\Delta X_{s}\right)^{2}\right)
$$

with $Z_{0}=1$ as claimed.

Solution 3.4

```
import numpy
import matplotlib.pyplot as plt
from poisson import poisson
def main():
    # The Poisson process parameter.
    intensity = 1000
    # Total time.
    T = 1.0
    # Number of steps.
    N = 10000
    # Time step size
    dt = T/N
    # Number of realizations to generate.
    m = 5
    # Create an empty array to store the realizations.
    x = numpy.empty ((m,N+1))
    # Initial values of x.
    x[:, 0] = 0
    poisson(x[:,0], N, dt, intensity, compensated=True, out=x[:,1:])
    t = numpy.linspace(0.0, N*dt, N+1)
    for k in range(m):
        plt.step(t, x[k])
    plt.show()
if __name__ == "__main__":
    main()
```

