Mathematical Finance

Solution sheet 4

Solution 4.1 The covariation of X and A can be expressed as a Lebesgue-Stieltjes integral

$$
\begin{aligned}
{[X, A]_{t} } & =\lim _{n} \sum_{k=1}^{n}\left(X_{k t / n}-X_{(k-1) t / n}\right)\left(A_{k t / n}-A_{(k-1) t / n}\right) \\
& =\lim _{n} \sum_{k=1}^{n} \int_{0}^{t} \mathbb{1}_{\{(k-1) t / n<s \leqslant k t / n\}}\left(X_{k t / n}-X_{(k-1) t / n}\right) d A_{s} \\
& =\int_{0}^{t} \lim _{n} \sum_{k=1}^{n} \mathbb{1}_{\{(k-1) t / n<s \leqslant k t / n\}}\left(X_{k t / n}-X_{(k-1) t / n}\right) d A_{s} \\
& =\int_{0}^{t} \Delta X_{s} d A_{s},
\end{aligned}
$$

where we used the boundedness of X. For each ω, the set $S_{t}(\omega)=\left\{s \leqslant t: \Delta X(\omega)_{s} \neq 0\right\}$ is at most countable, and the boundedness of X can be used to evaluate the integral

$$
\begin{aligned}
\int_{0}^{t} \Delta X_{s} d A_{s} & =\int_{0}^{t} \sum_{s \in S_{t}} \Delta X_{s} \mathbb{1}_{\{s=u\}} d A_{u} \\
& =\sum_{s \in S_{t}} \Delta X_{s} \int_{0}^{t} \mathbb{1}_{\{s=u\}} d A_{u} \\
& =\sum_{s \leqslant t} \Delta X_{s} \Delta A_{s}
\end{aligned}
$$

Solution 4.2 For $\lambda \in \mathbb{R}$ and

$$
M_{t}:=\exp \left(i X_{t}+\frac{1}{2}|\lambda|^{2} t\right)
$$

by Itô's formula,

$$
\begin{aligned}
M_{t} & =M_{0}+\int_{0}^{t} i M_{s} d X_{s}+\int_{0}^{t} M_{s} \frac{1}{2}|\lambda|^{2} d s+\frac{1}{2} \int_{0}^{t} M_{s} i^{2} \lambda^{2} d[X, X]_{s} \\
& =M_{0}+\int_{0}^{t} i M_{s} d X_{s}
\end{aligned}
$$

Since

$$
\sup _{s \leqslant t}\left|M_{s}\right|=\exp \left(\frac{1}{2}|\lambda|^{2} t\right)<\infty
$$

the process M is a martingale, and from

$$
E\left[\left.\frac{M_{t}}{M_{s}} \right\rvert\, \mathcal{F}_{s}\right]=1
$$

we obtain

$$
E\left[e^{i \lambda\left(X_{t}-X_{s}\right)} \mid \mathcal{F}_{s}\right]=\exp \left(-\frac{1}{2}|\lambda|^{2}(t-s)\right)
$$

where the right-hand side is the characteristic function of the normal distribution $\mathcal{N}(0, t-s)$. The process X is a Brownian motion.

Solution 4.3 Denote $\sup _{n} E\left[\left|M_{1}^{\pi^{n}}\right|^{2}\right]<\infty$ by C and $\bigcup_{n} \pi^{n}$ by D. The family $\left\{\frac{1}{C} \mathbb{1}_{\{C \neq 0\}} M_{1}^{\pi^{n}}\right\}$ is contained in the unit ball of $L^{2}:=L^{2}\left(\Omega, \mathcal{F}_{1}, P\right)$, so, by Banach-Alaoglu theorem (in conjunction with Eberlein-Šmulian theorem), there exists a subsequence $\left(\pi^{n_{k}}\right)$ such that $\left(M_{1}^{\pi^{n_{k}}}\right)$ converges weakly to some $\xi \in L^{2}$. We have $M_{t}^{\Pi^{n_{k}}} \rightarrow M_{t}$ for $t \in D$. On the other hand, for every $t \in D$, we have $M_{t}^{\Pi^{n_{k}}}=E\left[M_{1}^{\Pi^{n_{k}}} \mid \mathcal{F}_{t}\right] \rightarrow E\left[\xi \mid \mathcal{F}_{t}\right]$ weakly. Two limits must coincide, so, we have $M_{t}=E\left[\xi \mid \mathcal{F}_{t}\right]$, $t \in D$. Let $0 \leqslant s<t<1$ and $\left(s_{n}\right),\left(t_{n}\right) \subset D$ be such that $s<s_{n}<t<t_{n}, s_{n} \downarrow s$ and $t_{n} \downarrow t$. For any $A \in \mathcal{F}_{s}$, we have

$$
\begin{equation*}
E\left[M_{s_{n}} \mathbb{1}_{A}\right]=E\left[M_{t_{n}} \mathbb{1}_{A}\right] \tag{1}
\end{equation*}
$$

Because ($M_{s_{n}}$) and ($M_{t_{n}}$) are uniformly integrable, letting $n \rightarrow \infty$ in both sides of (1) yields

$$
E\left[M_{s} \mathbb{1}_{A}\right]=E\left[M_{t} \mathbb{1}_{A}\right]
$$

i.e., M is a martingale on $\left[0,1\left[\right.\right.$ with $M_{t}=E\left[\xi \mid \mathcal{F}_{t}\right]$ for $t \in[0,1[$.

Solution 4.4

```
import numpy
from poisson import poisson
from brownian import brownian
#Define a function to compute the quadratic variation of rows of mxN-matrix x
def qv(x,m,N):
    y = numpy.empty(x.shape)
    for i in range(m):
        for j in range(N):
            y[i,j+1]=y[i,j]+(x[i,j+1]-x[i,j])**2
    return y.mean(axis=0)[N]
def main():
    # The Wiener process parameter.
    delta = 1
    # The Poisson process parameter.
    intensity = 1
    # Total time.
    T = 1.0
    # Number of steps.
    N = 1000
    # Time step size
    dt = T/N
    # Number of realizations to generate.
    m = 1000
    # Create empty arrays to store the realizations.
    x = numpy.empty ((m,N+1))
    y = numpy.empty ((m,N+1))
```

```
    z = numpy.empty((m,N+1))
    # Initial values of x,y,z.
    x[:, 0] = 0
    y[:,0] = 0
    z[:,0] = 0
    # Simulate the paths
    brownian(x[:,0], N, dt, delta, out=x[:,1:])
    poisson(y[:,0], N, dt, intensity, compensated=False, out=y[:,1:])
    poisson(z[:,0], N, dt, intensity, compensated=True, out=z[:,1:])
    print qv(x,m,N), qv(y,m,N), qv(z,m,N)
if __name__ == "__main__":
    main()
```

