Mathematical Finance

Solution sheet 5

Remark that, for $\left(X^{n}\right) \subset \mathcal{S}$ and $X \in \mathcal{S}$, we have

$$
d_{E}\left(X^{n}, X\right) \rightarrow 0
$$

if and only if

$$
\left(H^{n} \bullet\left(X^{n}-X\right)\right) \xrightarrow{u . c . p .} 0 \text { for any }\left(H^{n}\right) \subset \mathbb{S}_{1}
$$

Solution 5.1

(a) Let $X, Y \in \mathcal{S}$. We have $d_{E}(X+Y, 0) \leqslant d_{E}(X, 0)+d_{E}(Y, 0)$ so that addition is jointly continuous and $d_{E}(c X, 0) \leqslant d_{E}(X, 0)$ for real $|c| \leqslant 1$; to show that scalar multiplication is jointly continuous we must show that $d\left(c^{n} X, 0\right) \rightarrow 0$ for a sequence of real numbers $\left|c^{n}\right| \leqslant 1$ with $c^{n} \rightarrow 0$. This follows from the fact that X is a good integrator as

$$
c^{n} \rightarrow 0 \Longrightarrow c^{n} H^{n} \xrightarrow{\text { u.c.p. }} 0 \Longrightarrow\left(\left(c^{n} H^{n}\right) \bullet X\right) \xrightarrow{\text { u.c.p. }} 0
$$

for any $\left(H^{n}\right) \subset \mathbb{S}_{1}$.
(b) The metric d_{E} is stronger than the metric d of the u.c.p. topology. By the completeness of d for \mathbb{D}, a Cauchy sequence $\left(X^{n}\right)$ in the metric d_{E} converges to a càdlàg process X. It suffices to show that the limit is a semimartingale (a good integrator). We have

$$
\begin{aligned}
P\left(\left|(H \bullet X)_{t}\right|>K\right) & \leqslant P\left(\left|\left(H \bullet\left(X-X^{n}\right)\right)_{t}\right|>K\right)+P\left(\left|(H \bullet X)_{t}\right|>K\right) \\
& \leqslant \frac{1}{K} d_{E}\left(X, X^{n}\right)+P\left(\left|\left(H \bullet X^{n}\right)_{t}\right|>K\right)
\end{aligned}
$$

Since each X^{n} is a good integrator, the image of \mathbb{S}_{1} under $H \mapsto\left(H \bullet X^{n}\right)_{t}$ is bounded in probability. Consequently, the image of \mathbb{S}_{1} under $H \mapsto(H \bullet X)_{t}$ is bounded in probability, i.e., X is a good integrator.

Solution 5.2 Let $P \sim Q$. Due to the equivalence, for any $n \in \mathbb{N}$, for every $\varepsilon>0$, we may find $C>0$ such that

$$
\begin{equation*}
E_{P}[1 \wedge|Y|] \leqslant E_{P}[|Y|] \leqslant \frac{1}{2^{n}} \Longrightarrow E_{Q}\left[1 \wedge \frac{|Y|}{C}\right] \leqslant \varepsilon \tag{1}
\end{equation*}
$$

Given a Cauchy sequence $\left(X_{n}\right)$ in the Emery topology of (Ω, \mathcal{F}, P), we find, for some $2^{L}>C$, that

$$
\sup _{H \in \mathbb{S}_{1}} E_{P}\left[1 \wedge 2^{L} \sup _{s \leqslant t} \left\lvert\,\left(H \bullet\left(X^{n}-X^{m}\right)_{s} \mid\right] \leqslant \frac{1}{2^{N}}\right. \text { for } m, n \geqslant N+L\right.
$$

so, from (1), we get

$$
\sup _{H \in \mathbb{S}_{1}} E_{Q}\left[1 \wedge \sup _{s \leqslant t} \mid\left(H \bullet\left(X^{n}-X^{m}\right)_{s} \mid\right] \leqslant \varepsilon \text { for } m, n \geqslant N+L\right.
$$

i.e., $\left(X_{n}\right)$ is Cauchy in the Emery topology of (Ω, \mathcal{F}, Q).

Solution 5.3 Let $\left(Y^{n}\right) \subset \mathbb{L}$ such that $Y^{n} \xrightarrow{\text { u.c.p. }} 0$ and $\left(H^{n}\right) \subset \mathbb{S}_{1}$. Then $H^{n} Y^{n} \xrightarrow{\text { u.c.p. }} 0$ and consequently

$$
\left(H^{n} \bullet\left(Y^{n} \bullet X\right)\right)=\left(\left(H^{n} Y^{n}\right) \bullet X\right) \xrightarrow{\text { u.c.p. }} 0
$$

i.e., $\left(Y^{n} \bullet X\right) \rightarrow 0$ in the Emery topology.

Solution 5.4

```
import numpy
from pylab import hist, show
from matplotlib.pyplot import subplot
from brownian import brownian
#Function computes the forward integral of rows of a mxN-matrix w.r.t. another.
def integral(x,y,m,N,out=None):
    if out is None:
            out = numpy.empty(x.shape)
    for i in range(m):
    for j in range(N):
        out[i,j+1]=out[i,j]+x[i,j]*(y[i,j+1]-y[i,j])
    return out
def main():
    # The Wiener process parameter.
    delta = 1
    # Total time.
    T = 1.0
    # Number of steps.
    N = 1000
    # Time step size
    dt = T/N
    # Number of realizations to generate.
    m = 5000
    # Create empty arrays to store the realizations and integrals.
    x = numpy.empty((m,N+1))
    y = numpy.empty((m,N+1))
    z = numpy.empty((m,N+1))
    w = numpy.empty((m,N+1))
    # Initial values of x,y,z,w.
    x[:, 0] = 0
    y[:,0] = 0
    z[:, 0] = 0
    w[:, O] = 0
    # Simulate the paths
    brownian(x[:,0], N, dt, delta, out=x[:,1:])
    brownian(y[:,0], N, dt, delta, out=y[:,1:])
    # Compute the integrals
    integral(x,y,m,N,out=z)
```

```
    integral(y,z,m,N,out=w)
    # Plot the terminal distribution
    hist(0.5*(z[:,N]-w[:,N]), normed=True,bins='auto')
    show()
if __name__ == "__main__":
    main()
```

