# Mathematical Finance 

## Solution sheet 7

Solution 7.1 First let $p: X \rightarrow \mathbb{R}$ be a sublinear functional on a vector space. If $p$ is linear and $f(x) \leqslant p(x)$ for all $x \in X$ for some linear functional $f: X \rightarrow \mathbb{R}$, then $-f(x)=f(-x) \leqslant$ $p(-x)=-p(x)$, so $p(x) \leqslant f(x)$ for all $x \in X$, i.e., $f=p$. Now assume that $p$ dominates exactly one linear functional on $X$ and that $p$ is not linear. Then there exists some $x_{0} \neq 0$ such that $-p\left(-x_{0}\right)<p\left(x_{0}\right)$. Let $M:=\left\{\lambda x_{0}: \lambda \in \mathbb{R}\right\}$ be the vector space generated by $x_{0}$ and define the linear functionals $f, g: M \rightarrow \mathbb{R}$ by $f\left(\lambda x_{0}\right)=\lambda p\left(x_{0}\right)$ and $g\left(\lambda x_{0}\right)=-\lambda p\left(-x_{0}\right)$. From $f\left(x_{0}\right)=p\left(x_{0}\right)$ and $g\left(x_{0}\right)=-p\left(-x_{0}\right)$ we see that $f \neq g$. Next, notice that $f(z) \leqslant p(z)$ and $g(z) \leqslant p(z)$ for each $z \in M$, that is, $p$ dominates both $f$ and $g$ on the subspace $M$. Now, by the Hahn-Banach theorem, the two distinct linear functionals $f$ and $g$ have linear extensions to all of $X$ dominated there by $p$, a contradiction.

Solution 7.2 Let $Q$ be an equivalent martingale measure for $P$ which exists by $(N A)$. By Doob's maximal inequality, for every 1-admissible $H$, we have

$$
Q\left((\mid H \circ X)_{T}^{*} \mid>K\right) \leqslant \frac{2 E_{Q}\left[(H \circ X)_{T}^{-}\right]}{K} \leqslant \frac{2}{K}
$$

for $K>0$, so, the family $\left\{(H \circ X)_{T}: H\right.$ is 1-admissible $\}$ is bounded in $Q$ and consequently in $P$, i.e., $(N U P B R)$ holds.

Solution 7.3 Let $P$ be the Lebesgue measure on $\Omega:=] 0,1]$. Define

$$
X^{n, k}:=n^{2} \mathbb{1}_{](k-1) / n, k / n]}, k=1, \ldots, n \in \mathbb{N} .
$$

We have

$$
P\left(X^{n, k}>K\right)= \begin{cases}1 / n & \text { if } n>\sqrt{K} \\ 0 & \text { otherwise }\end{cases}
$$

so, the family $\left\{X^{n, k}\right\}$ is bounded in probability, but since

$$
\sum_{k=1}^{n} \frac{1}{n} X^{n, k}=n \in \operatorname{co}\left(X^{n, k}\right), n \in \mathbb{N}
$$

the convex hull of $\left\{X^{n, k}\right\}$ is not bounded in probability.
Solution 7.4 Let $B$ and $C$ be two independent Brownian motions. Define

$$
L_{t}:=\exp \left(B_{t}-\frac{1}{2} t\right) \text { and } N_{t}:=\exp \left(C_{t}-\frac{1}{2} t\right)
$$

and

$$
\tau:=\inf \left\{t \geqslant 0: L_{t}=\frac{1}{2}\right\} \text { and } \sigma:=\inf \left\{t \geqslant 0: N_{t}=2\right\} .
$$

By the properties of Brownian motion, we get

$$
P(\tau=\infty)=0 \text { and } P(\sigma=\infty)=P(\sigma<\infty)=\frac{1}{2}
$$

Let $X=L^{\tau \wedge \sigma}$ and $Y=N^{\tau \wedge \sigma}$. From above, we conclude that $X_{\infty}>0$ a.s. and $Y_{\infty}>0$ a.s. Moreover, we have

$$
E\left[X_{\tau \wedge \sigma}\right]=E\left[L_{\tau \wedge \sigma}\right]=E\left[L_{\tau} 1_{\{\sigma=\infty\}}\right]+E\left[L_{\tau \wedge \sigma} 1_{\{\sigma<\infty\}}\right]
$$

For the first term, we get

$$
E\left[L_{\tau} 1_{\{\sigma=\infty\}}\right]=P(\sigma=\infty) E\left[L_{\tau}\right]=\frac{1}{4}
$$

by independence, and for the second term,

$$
E\left[L_{\tau \wedge \sigma} 1_{\{\sigma<\infty\}}\right]=\int_{0}^{\infty} P(\sigma \in d t) E\left[L_{\tau \wedge t}\right]=\int_{0}^{\infty} P(\sigma \in d t)=P(\sigma<\infty)=\frac{1}{2}
$$

by independence and the optional stopping theorem. Hence,

$$
E\left[X_{\infty}\right]=E\left[X_{\tau \wedge \sigma}\right]=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}<1
$$

and so we conclude that $X$ is a strict local martingale. However, the process $Y=\left(N^{\sigma}\right)^{\tau}$ is a uniformly bounded martingale (since $N^{\sigma}$ is) and the product $X Y$ is a uniformly integrable martingale. Indeed, we have

$$
E\left[X_{\infty} Y_{\infty}\right]=E\left[L_{\tau \wedge \sigma} N_{\tau \wedge \sigma}\right]=E\left[L_{\tau \wedge \sigma} N_{\sigma}\right]=2 E\left[L_{\tau \wedge \sigma} \mathbb{1}_{\{\sigma<\infty\}}\right]=2 P(\sigma<\infty)=1
$$

Finally, define the process $S$ as $d S=d M+d\langle M, M\rangle$, where $X=\mathcal{E}(-M)$. The measure $Q$ defined as

$$
d Q=X_{\infty} Y_{\infty} d P
$$

is an equivalent local martingale measure for $S$. The density $X_{\infty}$ does not define a probability measure.

Solution 7.5 The discounted asset prices $X^{1}$ and $X^{2}$ satisfy

$$
d X^{1}=X^{1} d B+\frac{1}{2} X^{1} d t \text { and } d X^{2}=\frac{1}{2} X^{2} d B+\frac{1}{8} X^{2} d t
$$

so, we try

$$
H^{1}=\frac{X^{2}}{X^{1}} \text { and } H^{2}=-2
$$

```
import numpy
from pylab import hist, show
from matplotlib.pyplot import subplot
from brownian import brownian
#Function computes the forward integral of rows of a mxN-matrix w.r.t. another
def integral(x,y,m,N,out=None):
    if out is None:
        out = numpy.empty(x.shape)
    for i in range(m):
    for j in range(N):
    out[i,j+1]=out[i,j]+x[i,j]*(y[i,j+1]-y[i,j])
```

```
    return out
def main():
    # The Wiener process parameter.
    delta = 1
    # Total time.
    T = 1.0
    # Number of steps.
    N = 1000
    # Time step size
    dt = T/N
    # Number of realizations to generate.
    m = 5000
    # Create empty arrays to store the realizations and integrals.
    x = numpy.empty((m,N+1))
    y = numpy.empty((m,N+1))
    z = numpy.empty((m,N+1))
    # Initial values of x,y,z,w.
    x[:, 0] = 0
    y[:, 0] = 0
    z[:,0] = 0
    # Simulate the paths
    brownian(x[:,0], N, dt, delta, out=x[:,1:])
    # Compute the integrals
    integral (numpy.exp(.5*x)/numpy.exp (x), numpy.exp(x),m,N,out=y)
    integral(-2.0*numpy.ones ((m,N+1)), numpy.exp(.5*x),m,N,out=z)
    # Plot the terminal distribution
    hist(y[:,N]+z[:,N],normed=True,bins='auto')
    show()
if __name__ == "__main__":
    main()
```

