
ETH Zürich, HS 2017
Prof. Josef Teichmann Matti Kiiski

Mathematical Finance
Solution sheet 7

Solution 7.1 First let p : X Ñ R be a sublinear functional on a vector space. If p is linear
and fpxq ď ppxq for all x P X for some linear functional f : X Ñ R, then ´fpxq “ fp´xq ď
pp´xq “ ´ppxq, so ppxq ď fpxq for all x P X, i.e., f “ p. Now assume that p dominates exactly
one linear functional on X and that p is not linear. Then there exists some x0 ‰ 0 such that
´pp´x0q ă ppx0q. Let M :“ tλx0 : λ P Ru be the vector space generated by x0 and define the
linear functionals f, g : M Ñ R by fpλx0q “ λppx0q and gpλx0q “ ´λpp´x0q. From fpx0q “ ppx0q
and gpx0q “ ´pp´x0q we see that f ‰ g. Next, notice that fpzq ď ppzq and gpzq ď ppzq for each
z PM , that is, p dominates both f and g on the subspace M . Now, by the Hahn-Banach theorem,
the two distinct linear functionals f and g have linear extensions to all of X dominated there by p,
a contradiction.

Solution 7.2 Let Q be an equivalent martingale measure for P which exists by pNAq. By Doob’s
maximal inequality, for every 1-admissible H, we have

Qpp|H ˝Xq˚T | ą Kq ď
2EQrpH ˝Xq´T s

K
ď

2
K

for K ą 0, so, the family tpH ˝XqT : H is 1-admissibleu is bounded in Q and consequently in P ,
i.e., pNUPBRq holds.

Solution 7.3 Let P be the Lebesgue measure on Ω :“s0, 1s. Define

Xn,k :“ n2
1spk´1q{n,k{ns, k “ 1, . . . , n P N.

We have

P pXn,k ą Kq “

#

1{n if n ą
?
K,

0 otherwise,

so, the family tXn,ku is bounded in probability, but since

n
ÿ

k“1

1
n
Xn,k “ n P copXn,kq, n P N,

the convex hull of tXn,ku is not bounded in probability.

Solution 7.4 Let B and C be two independent Brownian motions. Define

Lt :“ exp
ˆ

Bt ´
1
2 t
˙

and Nt :“ exp
ˆ

Ct ´
1
2 t
˙

and
τ :“ inf

"

t ě 0 : Lt “
1
2

*

and σ :“ inf
"

t ě 0 : Nt “ 2
*

.

By the properties of Brownian motion, we get

P pτ “ 8q “ 0 and P pσ “ 8q “ P pσ ă 8q “
1
2 .

Updated: November 7, 2017 1 / 3

Mathematical Finance, HS 2017 Solution sheet 7

Let X “ Lτ^σ and Y “ Nτ^σ. From above, we conclude that X8 ą 0 a.s. and Y8 ą 0 a.s.
Moreover, we have

ErXτ^σs “ ErLτ^σs “ ErLτ1tσ“8us ` ErLτ^σ1tσă8us.

For the first term, we get
ErLτ1tσ“8us “ P pσ “ 8qErLτ s “

1
4

by independence, and for the second term,

ErLτ^σ1tσă8us “
ż 8

0
P pσ P dtqErLτ^ts “

ż 8

0
P pσ P dtq “ P pσ ă 8q “

1
2

by independence and the optional stopping theorem. Hence,

ErX8s “ ErXτ^σs “
1
4 `

1
2 “

3
4 ă 1,

and so we conclude that X is a strict local martingale. However, the process Y “ pNσqτ is
a uniformly bounded martingale (since Nσ is) and the product XY is a uniformly integrable
martingale. Indeed, we have

ErX8Y8s “ ErLτ^σNτ^σs “ ErLτ^σNσs “ 2ErLτ^σ1tσă8us “ 2P pσ ă 8q “ 1.

Finally, define the process S as dS “ dM ` dxM,My, where X “ Ep´Mq. The measure Q defined
as

dQ “ X8Y8dP

is an equivalent local martingale measure for S. The density X8 does not define a probability
measure.

Solution 7.5 The discounted asset prices X1 and X2 satisfy

dX1 “ X1dB `
1
2X

1dt and dX2 “
1
2X

2dB `
1
8X

2dt,

so, we try

H1 “
X2

X1 and H2 “ ´2.

1 import numpy
2 from pylab import hist, show
3 from matplotlib.pyplot import subplot
4

5 from brownian import brownian
6

7

8 #Function computes the forward integral of rows of a mxN´matrix w.r.t. another

9 def integral(x,y,m,N,out=None):
10

11 if out is None:
12 out = numpy.empty(x.shape)

13

14 for i in range(m):
15 for j in range(N):
16 out[i,j+1]=out[i,j]+x[i,j]∗(y[i,j+1]´y[i,j])

Updated: November 7, 2017 2 / 3

Mathematical Finance, HS 2017 Solution sheet 7

17

18 return out
19

20

21 def main():
22

23 # The Wiener process parameter.

24 delta = 1

25 # Total time.

26 T = 1.0

27 # Number of steps.

28 N = 1000

29 # Time step size

30 dt = T/N

31 # Number of realizations to generate.

32 m = 5000

33 # Create empty arrays to store the realizations and integrals.

34 x = numpy.empty((m,N+1))

35 y = numpy.empty((m,N+1))

36 z = numpy.empty((m,N+1))

37 # Initial values of x,y,z,w.

38 x[:, 0] = 0

39 y[:, 0] = 0

40 z[:, 0] = 0

41

42 # Simulate the paths

43 brownian(x[:,0], N, dt, delta, out=x[:,1:])

44

45 # Compute the integrals

46 integral(numpy.exp(.5∗x)/numpy.exp(x),numpy.exp(x),m,N,out=y)
47 integral(´2.0∗numpy.ones((m,N+1)),numpy.exp(.5∗x),m,N,out=z)
48

49 # Plot the terminal distribution

50 hist(y[:,N]+z[:,N],normed=True,bins=’auto’)

51 show()

52

53 if __name__ == "__main__":
54 main()

Updated: November 7, 2017 3 / 3

