Mathematical Finance

Solution sheet 12

Solution 12.1 For $\Omega=\left\{\omega_{1}, \ldots, \omega_{N}\right\}$, denoting $X_{T}\left(\omega_{n}\right):=\xi_{n}, p_{n}=P\left(\omega_{n}\right)$ and $q_{n}^{m}=Q^{m}\left(\omega_{n}\right)$, the utility maximization problem is

$$
\operatorname{maximize} E_{P}\left[U\left(X_{T}\right)\right]=\sum_{n=1}^{N} p_{n} U\left(\xi_{n}\right)
$$

subject to

$$
E_{Q^{m}}\left[X_{T}\right]=\sum_{n=1}^{N} q_{n}^{m} \xi_{n} \leqslant x, m=1, \ldots, M
$$

where $\left\{Q^{m}: m=1, \ldots, M\right\}$ are the extreme points of $\mathcal{M}^{a}(s)$. The Lagrangian is

$$
\begin{aligned}
L\left(\xi_{1}, \ldots, \xi_{N}, \eta_{1}, \ldots, \eta_{M}\right) & =\sum_{n=1}^{N} p_{n} U\left(\xi_{n}\right)-\sum_{m=1}^{M} \eta_{m}\left(\sum_{n=1}^{N} q_{n}^{m} \xi_{n}-x\right) \\
& =\sum_{n=1}^{N} p_{n}\left(U\left(\xi_{n}\right)-\sum_{m=1}^{M} \eta_{m} \frac{q_{n}^{m}}{p_{n}} \xi_{n}\right)+\sum_{m=1}^{M} \eta_{m} x .
\end{aligned}
$$

Writing $y:=\eta_{1}+\cdots+\eta_{M}, \mu_{M}:=\frac{\eta_{m}}{y}, \mu:=\left(\mu_{1}, \ldots, \mu_{m}\right)$ and $Q^{\mu}:=\mu_{1} Q^{1}+\cdots+\mu_{M} Q^{M}$, we get

$$
L\left(\xi_{1}, \ldots, \xi_{N}, y, Q\right)=E_{P}\left[U\left(X_{T}\right)\right]-y E_{Q}\left[X_{T}-x\right]=\sum_{n=1}^{N} p_{n}\left(U\left(\xi_{n}\right)-y \frac{q_{n}}{p_{n}} \xi_{n}\right)+y x
$$

Write

$$
\Phi\left(\xi_{1}, \ldots, \xi_{n}\right):=\inf _{y>0, Q \in \mathcal{M}^{a}(S)} L\left(\xi_{1}, \ldots, \xi_{N}, y, Q\right) \text { and } \Psi(y, Q):=\inf _{\xi_{1}, \ldots, \xi_{N}} L\left(\xi_{1}, \ldots, \xi_{N}, y, Q\right)
$$

so that

$$
u(x)=\sup _{\xi_{1}, \ldots, \xi_{N}} \Phi\left(\xi_{1}, \ldots, \xi_{n}\right)
$$

On the dual,

$$
\Psi(y, Q)=\sum_{n=1}^{N} p_{n} V\left(y \frac{q_{n}}{p_{n}}\right)+y x
$$

minimizing subject to Q, for each $y>0$, we obtain the dual value function

$$
\begin{equation*}
v(y)=\inf _{Q \in \mathcal{M}^{a}(S)} \sum_{n=1}^{N} p_{n} V\left(y \frac{q_{n}}{p_{n}}\right)=\sum_{n=1}^{N} p_{n} V\left(y \frac{\hat{q}_{n}(y)}{p_{n}}\right) \tag{1}
\end{equation*}
$$

where the optimizer $\hat{Q}=\left(\hat{q}_{1}, \ldots, \widehat{q}_{N}\right)$ exists due to compactness of \mathcal{M}^{a}. Thus, as in the complete case, for

$$
\widehat{y}:=\underset{y>0}{\operatorname{argmin}}\{v(y)+y x\}
$$

and the corresponding $\widehat{Q}:=\left(\hat{q}_{1}, \ldots, \widehat{q}_{N}\right)$ given by (1), we get $\widehat{X}_{T}:=\left(\widehat{\xi}_{1}, \ldots, \widehat{\xi}_{N}\right)$ as

$$
\widehat{\xi}_{n}:=\left[U^{\prime}\right]^{-1}\left(\widehat{y} \frac{\hat{q}_{n}}{p_{n}}\right)
$$

and $\left(\widehat{X}_{T}, \widehat{y}, \hat{Q}\right)$ is the unique saddle-point of the Lagrangian and the value functions u and v are conjugate to each other.

Solution 12.2

(a) Consider $x^{1}, x^{2} \in \mathbb{R}, \lambda \in[0,1]$, and $\alpha^{1}, \alpha^{2} \in \mathcal{A}$. We write $x^{\lambda}:=\lambda x^{1}+(1-\lambda) x^{2}$. Also $X^{t, x^{i}}$ is the wealth process starting from x^{i} at time t and controlled by α^{i}, where $i \in\{1,2\}$. Set

$$
\alpha_{s}^{\lambda}:=\lambda \alpha_{s}^{1}+(1-\lambda) \alpha_{s}^{2} .
$$

By the convexity of A, the process α^{λ} lies in the admissibility class \mathcal{A}. Moreover from the linear dynamics of the wealth process, we see that $X^{\lambda}=\lambda X^{t, x^{1}}+(1-\lambda) X^{t, x^{2}}$ is governed by

$$
\begin{aligned}
d X_{s}^{\lambda} & =\alpha_{t}^{\lambda}\left((\mu-r) d t+\sigma d W_{t}\right), \quad s \geqslant t \\
X_{t}^{\lambda} & =x^{\lambda} .
\end{aligned}
$$

Therefore, by the concavity of the utility function U, we have

$$
U\left(\lambda X_{T}^{t, x_{1}}+(1-\lambda) X_{T}^{t, x_{2}}\right) \geqslant \lambda U\left(X_{T}^{t, x_{1}}\right)+(1-\lambda) U\left(X_{T}^{t, x_{2}}\right)
$$

which implies that

$$
v\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geqslant \lambda U\left(X_{T}^{t, x_{1}}\right)+(1-\lambda) U\left(X_{T}^{t, x_{2}}\right)
$$

Since the choice of α^{1} and α^{2} above was arbitrary, we conclude that

$$
v\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geqslant \lambda v\left(x_{1}\right)+(1-\lambda) v\left(x_{2}\right)
$$

(b) The dynamic programming principle is

$$
v(t, x)=\operatorname{ess} \sup _{\alpha \in \mathcal{A}} E\left[v\left(\theta, X_{\theta}^{t, x, \alpha}\right) \mid \mathcal{F}_{t}\right]
$$

for $\theta \in[t, T]$ and the dynamic programming equation is

$$
-v_{t}(t, x)-\sup _{a \in A}\left\{a(\mu-r) v_{x}(t, x)+\frac{1}{2} a^{2} \sigma^{2} v_{x x}(t, x)\right\}=0
$$

with the boundary condition $v(T, x)=U(x)$.
Solution 12.3 The pointwise maximization in the HJB leads to the following candidate for the optimal control

$$
\begin{equation*}
\widehat{\alpha}(t, x)=-\frac{\mu-r}{\sigma^{2}} \frac{v_{x}}{v_{x x}}(t, x) \tag{2}
\end{equation*}
$$

and the HJB becomes

$$
-v_{t}(t, x)+\frac{1}{2} \frac{(\mu-r)^{2}}{\sigma^{2}} \frac{v_{x}^{2}}{v_{x x}}(t, x)=0
$$

For the exponential utility, we postulate that the solution is of the form

$$
v(t, x)=-e^{-\gamma x} \phi(t)
$$

Then the HJB reduces to an ODE,

$$
\phi^{\prime}(t)=\frac{1}{2} \frac{(\mu-r)^{2}}{\sigma^{2}} \phi(t)
$$

whose solution satisfying the terminal condition $\phi(T)=1$ is

$$
\phi(t)=\exp \left(-\frac{1}{2} \frac{(\mu-r)^{2}}{\sigma^{2}}(T-t)\right)
$$

i.e.,

$$
\begin{equation*}
v(0, x)=-\exp \left(-\gamma x-\frac{1}{2} \frac{(\mu-r)^{2}}{\sigma^{2}} T\right) \tag{3}
\end{equation*}
$$

From (2), we obtain that the optimal monetary amount invested in the stock is constant

$$
\widehat{\alpha}_{t}=\frac{\mu-r}{\gamma \sigma^{2}} .
$$

By the verification theorem, $\widehat{\alpha}$ is the optimal control and the optimal value is given by (3).

Solution 12.4

```
import numpy
import matplotlib.pyplot as plt
from poisson import poisson
from brownian import brownian
def main():
    # The interest rate.
    r = 0.0
    # The mean value return rate.
    mu = 0.06
    # The Wiener process parameter.
    delta = 0.4
    # Total time.
    T = 1.0
    # Number of steps.
    N = 1000
    # Time step size
    dt = T/N
    # Number of realizations to generate.
    m = 1
    # Create an empty array to store the realizations.
    x = numpy.empty ((m,N+1))
    y = numpy.empty ((m,N+1))
    z = numpy.empty ((m,N+1))
    # Initial values of x,y,z.
    x[:, 0] = 0
    y[:, Q] = 1
    # Simulate the paths
```

```
    brownian(x[:,0], N, dt, delta, out=x[:,1:])
    # Plot the paths of the wealth process for gamma=10^n, n=0,1,2
    for n in range(3):
        y = (mu-r)/(10.**n*delta**2.)*(x+numpy.cumsum(dt*numpy.ones ((m,N+1))))
        t = numpy.linspace(0.0, N*dt, N+1)
    for k in range(m):
        plt.step(t, y[k])
    plt.show()
if __name__ == "__main__":
    main()
```

