Mathematical Finance

Solution sheet 13

Define the convex conjugate of U as

$$V(y) = \sup_{x \in \text{dom}(U)} \{ U(x) - xy \}, \ y > 0.$$

By the Fenchel inequality, $U(x) \leq V(y) + xy$ for all $x \in \text{dom}(U)$ and y > 0. Hence,

$$E[U(X_T)] \leqslant E\left[V\left(y\frac{dQ}{dP}\right)\right] + E_Q[yX_T] \leqslant E\left[V\left(y\frac{dQ}{dP}\right)\right] + yx,$$

for every $x \in \text{dom}(U)$ and y > 0. The wealth process X is a Q-supermartingale for every $\varphi \in \mathcal{A}$ and the equality is achieved for the pair (\hat{y}, \hat{X}) for which

$$\hat{y}\frac{dQ}{dP} = U'(\hat{X}_T)$$
 and $E_Q[\hat{X}_T] = x$.

Since U is strictly increasing and strictly concave, we have $\hat{y} > 0$ for $\hat{y} \frac{dQ}{dP} = U'(\hat{X}_T)$.

Solution 13.1 For $U(x) = -e^{-\gamma x}$, the inverse of the marginal utility is $(U')^{-1}(y) = -\frac{1}{\gamma} \log(\frac{y}{\gamma})$ and we have

$$x = E_Q \left[\hat{X}_T \right] = E \left[\frac{dQ}{dP} (U')^{-1} \left(\hat{y} \frac{dQ}{dP} \right) \right] = E \left[\frac{dQ}{dP} \left(-\frac{1}{\gamma} \log \left(\frac{\hat{y}}{\gamma} \frac{dQ}{dP} \right) \right) \right],$$

so,

$$\hat{y} = \gamma e^{-\gamma x - E\left[\frac{dQ}{dP}\log\left(\frac{dQ}{dP}\right)\right]}$$

In the Black-Scholes, the equivalent martingale measure is given by

$$\frac{dQ}{dP} = \exp\left(-\int_0^T \frac{\mu - r}{\sigma} dW_t - \int_0^T \frac{(\mu - r)^2}{2\sigma^2} dt\right). \tag{1}$$

We have

$$\widehat{X}_T = x + \int_0^T \varphi_t dS_t = -\frac{1}{\gamma} \log(\frac{\widehat{y}}{\gamma} \frac{dQ}{dP}) = -\frac{\log(\widehat{y}/\gamma)}{\gamma} + \int_0^T \frac{(\mu - r)}{\gamma \sigma} dW_t + \int_0^T \frac{(\mu - r)^2}{2\gamma \sigma^2} dt$$

$$= x + \int_0^T \frac{\mu - r}{\gamma \sigma^2} \frac{1}{S_t} (S_t \sigma dW_t + S_t(\mu - r) dt) = x + \int_0^T \frac{\mu - r}{\gamma \sigma^2} \frac{1}{S_t} dS_t.$$

Thus, $\hat{\varphi}_t = \frac{\mu - r}{\gamma \sigma^2} \frac{1}{S_t}$, so, the amount of money invested in the stock $\hat{\alpha}_t = \frac{\mu - r}{\gamma \sigma^2}$ is constant.

Solution 13.2 For $U(x) = \frac{x^{\gamma}}{\gamma}$, the inverse of the marginal utility is $(U')^{-1}(y) = y^{-\delta}$ with $\delta = \frac{1}{1-\gamma}$.

Denote by Z the density process of Q w.r.t. P. The optimal wealth process is

$$\begin{split} \widehat{X}_t &= E_Q[\widehat{y}^{-\delta} Z_T^{-\delta} \mid \mathcal{F}_t] = \widehat{y}^{-\delta} E_Q \left[\exp\left(\int_0^T \frac{\mu - r}{\sigma} \delta dW_t - \frac{1}{2} \int_0^T \frac{(\mu - r)^2}{\sigma^2} \delta dt \right) \mid \mathcal{F}_t \right] \\ &= \widehat{y}^{-\delta} \exp\left(\frac{1}{2} \int_0^T \frac{(\mu - r)^2}{\sigma^2} \delta(\delta - 1) dt \right) E_Q \left[\exp\left(\int_0^T \frac{\mu - r}{\sigma} \delta dW_t - \frac{1}{2} \int_0^T \frac{(\mu - r)^2}{\sigma^2} \delta^2 dt \right) \mid \mathcal{F}_t \right] \\ &= \widehat{y}^{-\delta} \exp\left(\frac{1}{2} \int_0^T \frac{(\mu - r)^2}{\sigma^2} \delta(\delta - 1) dt \right) \exp\left(\int_0^t \frac{\mu - r}{\sigma} \delta dW_u - \frac{1}{2} \int_0^t \frac{(\mu - r)^2}{\sigma^2} \delta^2 du \right). \end{split}$$

By writing that $\hat{X}_0 = x$, we get $x = \hat{y}^{-\delta} \exp\left(\frac{1}{2} \int_0^T \frac{(\mu - r)^2}{\sigma^2} \delta(\delta - 1) dt\right)$, and so

$$\widehat{X}_t = x \exp\left(\int_0^t \frac{\mu - r}{\sigma} \delta dW_u - \frac{1}{2} \int_0^t \frac{(\mu - r)^2}{\sigma^2} \delta^2 du\right) =: M_t, \ 0 \leqslant t \leqslant T.$$

As in the previous exercise, identifying the dynamics of M with the dynamics of the wealth process \hat{X} , we get the optimal portfolio in terms of the number of shares $\hat{\varphi}_t = \frac{(\mu - r)\delta M_t}{\sigma^2 S_t} = \frac{\mu - r}{\sigma^2 (1 - \gamma)} \frac{\widehat{X}_t}{S_t}$, so, the proportion of wealth invested in the stock $\hat{\alpha}_t = \frac{\mu - r}{\sigma^2 (1 - \gamma)}$ is constant.

Solution 13.3 For $U(x) = \log(x)$, the inverse of the marginal utility is $(U')^{-1}(y) = \frac{1}{y}$. Denote by Z the density process of Q w.r.t. P. The optimal wealth process is

$$\hat{X}_t = E_Q \left[\frac{1}{\hat{y} Z_T} | \mathcal{F}_t \right] = E \left[\frac{Z_T}{Z_t} \frac{1}{\hat{y} Z_T} | \mathcal{F}_t \right] = \frac{1}{\hat{y} Z_t} =: M_t, \ 0 \leqslant t \leqslant T,$$

where \hat{y} is such that $\hat{X}_0 = x$, so, $\hat{y} = 1/x$. Hence, $\hat{X}_t = x/Z_t$, $0 \le t \le T$. Now, from (1), we deduce, by Itô's formula, that

$$dM_t = M_t \frac{\mu - r}{\sigma} dW_t.$$

As in the previous exercise, identifying the dynamics of M with the dynamics of the wealth process \widehat{X} , we get the optimal portfolio in terms of the number of shares $\widehat{\varphi}_t = \frac{\mu - r}{\sigma^2} \frac{\widehat{X}_t}{\widehat{S}_t}$, so, the proportion of wealth invested in the stock $\widehat{\alpha}_t = \frac{\widehat{\varphi}_t S_t}{\widehat{X}_t} = \frac{\mu - r}{\sigma^2}$ is constant.

Solution 13.4

```
import numpy
import matplotlib.pyplot as plt

from brownian import brownian

def main():

# The interest rate.

r = 0.0

# The mean value return rate.

mu = 0.06

# The Wiener process parameter.

delta = 0.4

# Total time.
```

```
T = 1.0
16
                      # Number of steps.
17
                     N = 1000
                     # Time step size
19
                     dt = T/N
                     # Number of realizations to generate.
21
                     # Create an empty array to store the realizations.
23
24
                     x = numpy.empty((m,N+1))
                     y = numpy.empty((m,N+1))
                     z = numpy.empty((m,N+1))
26
                     w = numpy.empty((m,N+1))
27
                      # Initial values of x,y,z,w.
28
                     x[:, 0] = 0
                     y[:, 0] = 0
30
                     z[:, 0] = 0
31
                      w[:, 0] = 0
32
                      # Simulate the paths
34
                      brownian(x[:,0], N, dt, delta, out=x[:,1:])
36
                      # Parametrize the utility functions
                      alpha = 1.
38
                      gamma = .5
39
40
                      # Compute the wealth process for exp, power and log utility
41
                     y = 1.0+(mu-r)/(alpha*delta**2.)*(x+numpy.cumsum(dt*numpy.ones((m,N+1))))
42
                      z = \text{numpy.exp}((\text{mu-r})/((1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*)*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*)*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*)*\text{gamma})/(2.*(1.-\text{gamma})*\text{delta})*x+((1.-2.*)*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-\text{gamma})*\text{gamma})/(2.*(1.-
43
                     **2.)))*((mu-r)**2/(delta)**2)*numpy.cumsum(dt*numpy.ones((m,N+1))))
                     w = numpy.exp((mu-r)/(delta)*x+.5*((mu-r)**2/(delta)**2)*numpy.cumsum(dt*)
44
                    numpy.ones((m,N+1)))
45
                     t = numpy.linspace(0.0, N*dt, N+1)
46
                     for k in range(m):
47
               plt.step(t, y[k])
48
                   for k in range(m):
49
              plt.step(t, z[k])
                     for k in range(m):
51
               plt.step(t, w[k])
52
                     plt.show()
53
```