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Solution 14.1 Denote by Z = (Z;)e[0,1] the density process process of QQ with respect to P.

(a) The second claim follows directly from the first claim together with the fact that yZr =
y% € D(y) since Z € Z(1) and the fact that the function V is decreasing. So it remains
to show the first claim. Seeking a contradiction, suppose there exists Y7 € D(y) such
that A := {Ypr > yZr} has P[A] > 0. Set a = Q[A] > 0 and define the @Q-martingale
M = (My)ie[o,r] by My := Eg[la | F¢]. Then M is non-negative and My = a by the fact
that Fy is P-trivial. By the predictable representation property of S under @, there exists
H e L(S) such that M = a+ HeS. Thus, M € V(a). Now, on the one hand, by the definition

of D(y), there exists a supermartingale Ze Z(y) with Yr < Zr. Therefore,
E[MrYr) < E[MyZy] < E[MyZ] = ay. (1)

On the other hand,
E[ZTMT] = EQ [MT] = MO = a. (2)

Thus, we arrive at the contradiction
0= E[Mr(Yr —yZr)] = E[l{v;>yz:y (Yo —yZr)] > 0. (3)

(b) Note that 0 < yp < 0 and v(y) < o0 on (yp, ). Moreover, recall that the function V is
strictly decreasing, strictly convex and in C* on (0, 0).

First, define the function g : (yo,0) — [—0,0] by
9(s) = E[ZrV'(sZr)). (4)

This is well defined as Zp > 0 P-a.s. and V' < 0. Moreover, it is increasing as V"’ is increasing.
Thus if g(sg) > —oo for some sy > yp, it follows by dominated convergence that it is continuous
on (sg, ).

Next, for y1,y2 € (yo, ), y1 < Y2, the fundamental theorem of calculus gives

Y

V(y2Zr) = V(y1Zr) = J 2 ZrV'(sZr) ds. (5)

Y1

Now, the left-hand side of (5) is integrable by assumption. Thus, the right-hand side is so,
too, and since V'’ < 0, the integrand on the right-hand side is strictly negative, and Fubini’s

theorem gives
Y2

o(ys) — v(yr) = f o(s) ds. (6)

Y1

In particular, the function g is finite a.e. on (yg, 90), and thus continuous and finite on (yg, ).
Now the claim follows from the fundamental theorem of calculus.

(c) First, recall that Xt € C(z) if and only if
sup FE[Xrh] <. (7)

YTED(l)
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By part a), this is equivalent to
E[XrZ7] < . (8)

Now, by part b) and the choice of g(x),
E[XrZr] = B[-V'(§(x)Zr) Zr] = = (§(2)) = =, (9)

and so X1 € C(x).
Next, fix X7 € C(z). We may assume without loss of generality that E[U(Xr)] > —o. By
the fact that X7 > 0 P-a.s. and U is in C! and strictly concave on (0, o0),

U(Xr) - U(X7) < U'(X7)(Xr — X7), (10)

where the equality is strict on {Xr # )A(T} Taking expectations and using the fact that
U'(—=V') =1id and (8) and (9) gives

E[U(Xr) - U(Xr)] < E[U'(X7r)(Xr — X7)] = §(2)E[Zr(Xr — X7)] <0.  (11)

If Xp = Xr P-a.s., then both inequalities are trivially equalities, and if P[Xr # )/(\'T] > 0,
then the first inequality is strict.

Solution 14.2 The situation on which the dual optimizer fails to be of the form

P 49

YT = dP, (12)

where % is the Radon-Nikodym density for some EcMM @ is given by Exercise 7.4. Consider
for instance the logarithmic utility U(z) = log(x) for which the dual optimization problem is to
minimize

BV (Y7)] = E[~log (Yr) — 1] = —E [log (Y7)| — 1,

or equivalently, maximize

over Yy € D(1). Take S := Z~!, where Z := X7, given by Exercise 7.4, fails to be uniformly
integrable martingale and deploy the usual time change ¢/(T — t) to obtain a finite time-horizon T
Clearly, Z1 € D(1), but since E[Zr] < 1 it does not define a probability measure, i.e., it fails be of
the form (12). For any Y7 € D(1), the process is a supermartingale starting from YySy = 1. Hence,
by Jensen’s inequality, we have

Ellog(Yr)] = E |10g <Z>1 + E[log(Zr)] < log (E[YrSr]) + E[log(Zr)] < Ellog(Zr)],

i.e.,

v(1) = —E[log(Zr)] - 1.

Solution 14.3

A,

(a) Since E[f/f] < 1 holds for all f € C, by the Markov inequality we have for any f € C and any
M >0

f 1 f 1
P[? > M] < ME[}A] < i

which indeed implies that the set {f/f|f € C} is bounded in probability. '
Since limps_,o0 P[f = M] = 0, from the fact that P[f > M] = P[%f > M] < P[%

£
f =
VM| + P[f = vM] it follows that C is bounded in probability as well.
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(b) The convexity and boundedness in probability of C’ follow immediately from the definition
of C’ and the corresponding properties of C. So it remains to show that C’ is closed in
probability. Let (f,,) be a sequence in C’ convergent to an f € Lg_ in probability. By passing to
a subsequence we can and will assume that (f,,) converges to f almost surely. By definition for
each n there is an h,, in C such that f,, < h,,. Since C’ is convex and bounded in probability,
conv(h,|n = 1) c C' is also bounded in probability and we can apply the Komlos lemma for
(hn) to find a sequence (h,,) such that h,, is a finite convex combination of iy, hyi1, ... and hy,
converges to an h in probability. Again, we will assume that this convergence also holds almost
surely. By the closedness of C, we have h € C. Furthermore, if h, = aihy, + ... + a}; hn,
for convex weights af,...,ay, =0, af +... + ay, =1, then as hy, > f,, for all m > 1 we

indeed have h,, > fn with f,, == af fn + ... +a}; fn,. On the other hand, it is clear that with

Jn — f almost surely it holds that fn — [ almost surely. Combining all arguments above we
can conclude that h = lim, o by, = lim, 4 f, = f, which implies that f € C’.

(¢) Now we assume that C = C’ and 1 € C. Then it is clear that for each n > 1, 1 € C™ and therefore
C™ is nonempty. Moreover, using the same argument as in b) we can easﬂy check that C™ is
closed in probability and convex. Also, since 1 € C, we have supccn Ellog f] > Eflog1] = 0.
On the other hand, since each f € C" satisfies f < n, we have sup secn Ellog f] < logn. Now
let (fmn) be a sequence in C" such that E[log f,,] 1 sup ecn E[log f] as m tends to oo. Using
Komlos lemma for (f,,,) we obtain a sequence (fm) and an f™ € LY such that fim is a finite
convex combination of f,,, fi+1,... and fm converges to f™ in probability. Since x — logz is
a concave function, we have E[log f,.] = E[log f,] for each m (note that we assume E[log f,,]
is increasing in m) for all m. Moreover, since C" is convex and in particular each fm is in C",
it holds that fm € C™. As a consequence of the closedness of C, we have f™ € C" and by the
inverse Fatou’s lemma (as log f < logn for all f € C™) we get

E[log f] = limsup E[log f,,] = limsup E[log fim] = sup E[log f].
m—0o0 m—o0 fecn
This gives E[log f"] = supsccn E[log f]. Finally note that as E[log f*] > E[log1] = 0 we
must have ™€ L9 .

(d) Now fix an n and we still denote by f™ a maximizer for sup ;cc. E[log f] as above. For any
e€(0,3] and f € C", since (1 — €) f™ + ef belongs to C™ due to its convexity, the maximality

of f™ implies that E[A(f]f™)] < 0 for A(f|f™) = tog ((1-9/" +Ef)7logf . Furthermore,
on {f > f"} we indeed have A (f|f™) > 0 while on {f < f"} We can use the inequality
logy —logx < =% for all 0 < z < y to show that (set y = ", x = (1 —€)f™ + €f)

=17 =7 YA

A n/_ = - ’
(1) = o T— = fn_%(fn_f) fn+f —2

where in the second inequality we use the assumption that € < % Now, by Fatou’s lemma,
we can derive that

E[hgg&(ﬂfﬂ)] = E[f ;nfn] < 1iggéle[Ae(f\f")] <0

where in the first equality above we used the fact that liminf._,q (log ((1—e)x+ey) —log 33) Je =

(y — x)/2. Now we only need to note that E[ 1= fn “] < 0 is equivalent to E[fin] < 1 and as
h"™ e C™ n LY, (see c)) the random variable 1/f™ is well-defined.

(e) Now for each n we obtain an f" € C" n LY, < C (keep in mind we still assume that C = C’)
such that E[f/f"] < 1 for all f € C". Now, we apply the Komlos lemma for the sequence
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(f™) to get a sequence (f”) and an f € LY such that £ is a finite convex combination of fm,

for L and f” converges to f in probability. The convexity of C ensures that each f" isin C
and therefore the closedness in probability of C ensures that f € C. Now, for any f € C*, for any
n =k, since C¥ = C", we have E[f/f"] < 1 and, furthermore, as z — % is convex, Jensen'’s

inequality implies that E[f/f"] < a?E[f/f"] + ... + at E[f/f"] <af + .. +a}, =1
for fr := alfn + ... + ay fn, with convex weights af,...a}, . This implies that for all
f € Up1 C*, by Fatou’s lemma we have E[f/f] < liminf,, o, E[f/f"] < 1. In particular,
inserting 1 €  J>, C* we can get E[1/f] < 1, which implies that f € LY, nC. Further, Since
for any f € C we have f A k € C*¥, the monotone convergence theorem provides that

E[f/f] = lim E[(f ~ k)/f] < 1.

Finally, since f € C and C is bounded in probability, we must have f < +00 almost surely.
Hence 1/f is also in LY | .

For a general C which is convex, closed and bounded in probability and C n Li L # T, we
first pick any g € C n LY, and define C9 := {f/g|f € C}. Obviously this set CY contains the
constant 1, and is convex, closed and bounded in probability as well. Now we apply our
previous arguments for the solid set C9 := { fIf < h for some h € CY } and get an element
h in €9’ such that E[f/h] <1 for all f € C9’. Clearly this h has to be an element in C9,
otherwise we would find a h € C9 with h > h and P[h > h] > 0, which would yield that
E[f/ﬁ] > 1. Hence, h has the form h = f/g for some f € C. Finally, since for any f € C,
E[f/ﬂ = E[(g)/(g)] = E[(g)/ﬁ] < 1, we see that f € C satisfies all the requirements we
want.

Solution 14.4

(a)

The decomposability simply means that the market modeled by X has the switching property.
More precisely, the investors on this market are allowed to switch their portfolios at any time
t € [0,7] from X to X’ if the event A, which is observable up to time ¢, happens, otherwise
they will keep their positions.

Let S be a semimartingale. Clearly then any process in 1 + G(O} , (S)) is adapted, RCLL,
nonnegative and starts at 1. As 0 is in X! = ©!, (9), we must have 1 € X! which means
that X! contains a strictly positive process. The convexity follows from the convexity of
G(6!. (S9)). To show the decomposability, pick X =1+ 9! e S and X' :=1+ 9 e S from

adm

X1, For any t € [0,T] and A € F;, we define 9= Lo,V + l(t’T](lA%ﬁ’ + 14c9). Tt is easy

to see that ¥ is predictable and S-integrable. Furthermore, we have

~ X
1+ (eS)y=14Xs+14 ;(\;th/\s
t

X, ‘s 1
= Xt ns)sefo,r] 15 in A
t

for all s € [0,T], which implies that 9 e O and (14e X5+ 14

Since X is a wealth process set, it is clear that X7 is convex and X7 N L?H_ # . So, if
Xr is closed in probability and satisfies NUPBR, using the result from the previous exercise
we can find an X7 € X7 which corresponds to the final value of a wealth process X such
that E[X7/Xr] < 1 holds for all X € X. Now for any X € X, for any ¢t € [0,T], the
decomposability ensures that the process
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belongs to X (choose A = ). So from E[Yy/X7] <1 it follows that E[X,/X,] < 1. Hence,
for t <rin [0,T], A € F, for any strictly positive process X' € X, since

- X!
Y, = 14c X, + 14 ;(V,SXW,S € [0, 7]

is an element in X, and Y, = 14c + 14 ;—’l,f(ﬁ the inequality E[Yr/)A(T] < 1 translates into
E[1a4(X]/X,)/(X{/X))] < P[A],

which in turn implies that E[(X /)2' )/(X{/)Z})LE] 1 and consequently X’/)/(\' is a super-

martingale for all strictly positive X " and We can extend this result to all X € X. Finally

note that this X is strictly positive so that x is R-valued, and since Xt < 400, % is strictly
positive.

Updated: December 19, 2017 5/5



