Mathematical Finance

Solution sheet 14

Solution 14.1 Denote by $Z=\left(Z_{t}\right)_{t \in[0, T]}$ the density process process of Q with respect to P.
(a) The second claim follows directly from the first claim together with the fact that $y Z_{T}=$ $y \frac{d Q}{d P} \in \mathcal{D}(y)$ since $Z \in \mathcal{Z}(1)$ and the fact that the function V is decreasing. So it remains to show the first claim. Seeking a contradiction, suppose there exists $Y_{T} \in \mathcal{D}(y)$ such that $A:=\left\{Y_{T}>y Z_{T}\right\}$ has $P[A]>0$. Set $a=Q[A]>0$ and define the Q-martingale $M=\left(M_{t}\right)_{t \in[0, T]}$ by $M_{t}:=E_{Q}\left[1_{A} \mid \mathcal{F}_{t}\right]$. Then M is non-negative and $M_{0}=a$ by the fact that \mathcal{F}_{0} is P-trivial. By the predictable representation property of S under Q, there exists $H \in L(S)$ such that $M=a+H \bullet S$. Thus, $M \in \mathcal{V}(a)$. Now, on the one hand, by the definition of $\mathcal{D}(y)$, there exists a supermartingale $\widetilde{Z} \in \mathcal{Z}(y)$ with $Y_{T} \leqslant \widetilde{Z}_{T}$. Therefore,

$$
\begin{equation*}
E\left[M_{T} Y_{T}\right] \leqslant E\left[M_{T} \tilde{Z}_{T}\right] \leqslant E\left[M_{0} \widetilde{Z}_{0}\right]=a y \tag{1}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
E\left[Z_{T} M_{T}\right]=E_{Q}\left[M_{T}\right]=M_{0}=a \tag{2}
\end{equation*}
$$

Thus, we arrive at the contradiction

$$
\begin{equation*}
0 \geqslant E\left[M_{T}\left(Y_{T}-y Z_{T}\right)\right]=E\left[1_{\left\{Y_{T}>y Z_{T}\right\}}\left(Y_{T}-y Z_{T}\right)\right]>0 \tag{3}
\end{equation*}
$$

(b) Note that $0 \leqslant y_{0}<\infty$ and $v(y)<\infty$ on $\left(y_{0}, \infty\right)$. Moreover, recall that the function V is strictly decreasing, strictly convex and in C^{1} on $(0, \infty)$.
First, define the function $g:\left(y_{0}, \infty\right) \rightarrow[-\infty, 0]$ by

$$
\begin{equation*}
g(s)=E\left[Z_{T} V^{\prime}\left(s Z_{T}\right)\right] . \tag{4}
\end{equation*}
$$

This is well defined as $Z_{T}>0 P$-a.s. and $V^{\prime}<0$. Moreover, it is increasing as V^{\prime} is increasing. Thus if $g\left(s_{0}\right)>-\infty$ for some $s_{0}>y_{0}$, it follows by dominated convergence that it is continuous on $\left(s_{0}, \infty\right)$.

Next, for $y_{1}, y_{2} \in\left(y_{0}, \infty\right), y_{1}<y_{2}$, the fundamental theorem of calculus gives

$$
\begin{equation*}
V\left(y_{2} Z_{T}\right)-V\left(y_{1} Z_{T}\right)=\int_{y_{1}}^{y_{2}} Z_{T} V^{\prime}\left(s Z_{T}\right) d s \tag{5}
\end{equation*}
$$

Now, the left-hand side of (5) is integrable by assumption. Thus, the right-hand side is so, too, and since $V^{\prime}<0$, the integrand on the right-hand side is strictly negative, and Fubini's theorem gives

$$
\begin{equation*}
v\left(y_{2}\right)-v\left(y_{1}\right)=\int_{y_{1}}^{y_{2}} g(s) d s \tag{6}
\end{equation*}
$$

In particular, the function g is finite a.e. on $\left(y_{0}, \infty\right)$, and thus continuous and finite on $\left(y_{0}, \infty\right)$. Now the claim follows from the fundamental theorem of calculus.
(c) First, recall that $X_{T} \in \mathcal{C}(x)$ if and only if

$$
\begin{equation*}
\sup _{Y_{T} \in \mathcal{D}(1)} E\left[X_{T} h\right] \leqslant x \tag{7}
\end{equation*}
$$

By part a), this is equivalent to

$$
\begin{equation*}
E\left[X_{T} Z_{T}\right] \leqslant x \tag{8}
\end{equation*}
$$

Now, by part b) and the choice of $\widehat{y}(x)$,

$$
\begin{equation*}
E\left[\hat{X}_{T} Z_{T}\right]=E\left[-V^{\prime}\left(\widehat{y}(x) Z_{T}\right) Z_{T}\right]=-v^{\prime}(\widehat{y}(x))=x \tag{9}
\end{equation*}
$$

and so $\hat{X}_{T} \in \mathcal{C}(x)$.
Next, fix $X_{T} \in \mathcal{C}(x)$. We may assume without loss of generality that $E\left[U\left(X_{T}\right)\right]>-\infty$. By the fact that $\hat{X}_{T}>0 P$-a.s. and U is in C^{1} and strictly concave on $(0, \infty)$,

$$
\begin{equation*}
U\left(X_{T}\right)-U\left(\hat{X}_{T}\right) \leqslant U^{\prime}\left(\hat{X}_{T}\right)\left(X_{T}-\hat{X}_{T}\right) \tag{10}
\end{equation*}
$$

where the equality is strict on $\left\{X_{T} \neq \hat{X}_{T}\right\}$. Taking expectations and using the fact that $U^{\prime}\left(-V^{\prime}\right)=\mathrm{id}$ and (8) and (9) gives

$$
\begin{equation*}
E\left[U\left(X_{T}\right)-U\left(\hat{X}_{T}\right)\right] \leqslant E\left[U^{\prime}\left(\hat{X}_{T}\right)\left(X_{T}-\hat{X}_{T}\right)\right]=\widehat{y}(x) E\left[Z_{T}\left(X_{T}-\hat{X}_{T}\right)\right] \leqslant 0 \tag{11}
\end{equation*}
$$

If $X_{T}=\hat{X}_{T} P$-a.s., then both inequalities are trivially equalities, and if $P\left[X_{T} \neq \hat{X}_{T}\right]>0$, then the first inequality is strict.

Solution 14.2 The situation on which the dual optimizer fails to be of the form

$$
\begin{equation*}
\widehat{Y}_{T}:=\frac{d Q}{d P} \tag{12}
\end{equation*}
$$

where $\frac{d Q}{d P}$ is the Radon-Nikodym density for some $\operatorname{E} \sigma \mathrm{MM} Q$ is given by Exercise 7.4. Consider for instance the logarithmic utility $U(x)=\log (x)$ for which the dual optimization problem is to minimize

$$
E\left[V\left(Y_{T}\right)\right]=E\left[-\log \left(Y_{T}\right)-1\right]=-E\left[\log \left(Y_{T}\right)\right]-1
$$

or equivalently, maximize

$$
E\left[\log \left(Y_{T}\right)\right]
$$

over $Y_{T} \in \mathcal{D}(1)$. Take $S:=Z^{-1}$, where $Z:=X^{\sigma \wedge \tau}$, given by Exercise 7.4, fails to be uniformly integrable martingale and deploy the usual time change $t /(T-t)$ to obtain a finite time-horizon T. Clearly, $Z_{T} \in \mathcal{D}(1)$, but since $E\left[Z_{T}\right]<1$ it does not define a probability measure, i.e., it fails be of the form (12). For any $Y_{T} \in \mathcal{D}(1)$, the process is a supermartingale starting from $Y_{0} S_{0}=1$. Hence, by Jensen's inequality, we have

$$
E\left[\log \left(Y_{T}\right)\right]=E\left[\log \left(\frac{Y_{T}}{Z_{T}}\right)\right]+E\left[\log \left(Z_{T}\right)\right] \leqslant \log \left(E\left[Y_{T} S_{T}\right]\right)+E\left[\log \left(Z_{T}\right)\right] \leqslant E\left[\log \left(Z_{T}\right)\right]
$$

i.e.,

$$
v(1)=-E\left[\log \left(Z_{T}\right)\right]-1
$$

Solution 14.3

(a) Since $E[f / \hat{f}] \leqslant 1$ holds for all $f \in \mathcal{C}$, by the Markov inequality we have for any $f \in \mathcal{C}$ and any $M>0$

$$
P\left[\frac{f}{\hat{f}} \geqslant M\right] \leqslant \frac{1}{M} E\left[\frac{f}{\hat{f}}\right] \leqslant \frac{1}{M},
$$

which indeed implies that the set $\{f / \hat{f} \mid f \in \mathcal{C}\}$ is bounded in probability. Since $\lim _{M \rightarrow \infty} P[\hat{f} \geqslant M]=0$, from the fact that $P[f \geqslant M]=P\left[\frac{f}{f} \hat{f} \geqslant M\right] \leqslant P\left[\frac{f}{\hat{f}} \geqslant\right.$ $\sqrt{M}]+P[\hat{f} \geqslant \sqrt{M}]$ it follows that \mathcal{C} is bounded in probability as well.
(b) The convexity and boundedness in probability of \mathcal{C}^{\prime} follow immediately from the definition of \mathcal{C}^{\prime} and the corresponding properties of \mathcal{C}. So it remains to show that \mathcal{C}^{\prime} is closed in probability. Let $\left(f_{n}\right)$ be a sequence in \mathcal{C}^{\prime} convergent to an $f \in L_{+}^{0}$ in probability. By passing to a subsequence we can and will assume that $\left(f_{n}\right)$ converges to f almost surely. By definition for each n there is an h_{n} in \mathcal{C} such that $f_{n} \leqslant h_{n}$. Since \mathcal{C}^{\prime} is convex and bounded in probability, $\operatorname{conv}\left(h_{n} \mid n \geqslant 1\right) \subset \mathcal{C}^{\prime}$ is also bounded in probability and we can apply the Komlos lemma for $\left(h_{n}\right)$ to find a sequence $\left(\widetilde{h}_{n}\right)$ such that \widetilde{h}_{n} is a finite convex combination of h_{n}, h_{n+1}, \ldots and \widetilde{h}_{n} converges to an h in probability. Again, we will assume that this convergence also holds almost surely. By the closedness of \mathcal{C}, we have $h \in \mathcal{C}$. Furthermore, if $\widetilde{h}_{n}=a_{1}^{n} h_{n}+\ldots+a_{N_{n}}^{n} h_{N_{n}}$ for convex weights $a_{1}^{n}, \ldots, a_{N_{n}}^{n} \geqslant 0, a_{1}^{n}+\ldots+a_{N_{n}}^{n}=1$, then as $h_{m} \geqslant f_{m}$ for all $m \geqslant 1$ we indeed have $\widetilde{h}_{n} \geqslant \widetilde{f}_{n}$ with $\widetilde{f}_{n}:=a_{1}^{n} f_{n}+\ldots+a_{N_{n}}^{n} f_{N_{n}}$. On the other hand, it is clear that with $f_{n} \rightarrow f$ almost surely it holds that $\widetilde{f}_{n} \rightarrow f$ almost surely. Combining all arguments above we can conclude that $h=\lim _{n \rightarrow \infty} \widetilde{h}_{n} \geqslant \lim _{n \rightarrow \infty} \widetilde{f}_{n}=f$, which implies that $f \in \mathcal{C}^{\prime}$.
(c) Now we assume that $\mathcal{C}=\mathcal{C}^{\prime}$ and $1 \in \mathcal{C}$. Then it is clear that for each $n \geqslant 1,1 \in \mathcal{C}^{n}$ and therefore \mathcal{C}^{n} is nonempty. Moreover, using the same argument as in b) we can easily check that \mathcal{C}^{n} is closed in probability and convex. Also, since $1 \in \mathcal{C}$, we have $\sup _{f \in \mathcal{C}^{n}} E[\log f] \geqslant E[\log 1]=0$. On the other hand, since each $f \in \mathcal{C}^{n}$ satisfies $f \leqslant n$, we have $\sup _{f \in \mathcal{C}^{n}} E[\log f] \leqslant \log n$. Now let $\left(f_{m}\right)$ be a sequence in \mathcal{C}^{n} such that $E\left[\log f_{m}\right] \uparrow \sup _{f \in \mathcal{C}^{n}} E[\log f]$ as m tends to ∞. Using Komlos lemma for $\left(f_{m}\right)$ we obtain a sequence $\left(\tilde{f}_{m}\right)$ and an $f^{n} \in L_{+}^{0}$ such that \tilde{f}_{m} is a finite convex combination of f_{m}, f_{m+1}, \ldots and \tilde{f}_{m} converges to f^{n} in probability. Since $x \mapsto \log x$ is a concave function, we have $E\left[\log \tilde{f}_{m}\right] \geqslant E\left[\log f_{m}\right]$ for each m (note that we assume $E\left[\log f_{m}\right]$ is increasing in m) for all m. Moreover, since \mathcal{C}^{n} is convex and in particular each \widetilde{f}_{m} is in \mathcal{C}^{n}, it holds that $\widetilde{f}_{m} \in \mathcal{C}^{n}$. As a consequence of the closedness of \mathcal{C}^{n}, we have $f^{n} \in \mathcal{C}^{n}$ and by the inverse Fatou's lemma (as $\log f \leqslant \log n$ for all $f \in \mathcal{C}^{n}$) we get

$$
E\left[\log f^{n}\right] \geqslant \limsup _{m \rightarrow \infty} E\left[\log \tilde{f}_{m}\right] \geqslant \limsup _{m \rightarrow \infty} E\left[\log f_{m}\right] \geqslant \sup _{f \in \mathcal{C}^{n}} E[\log f] .
$$

This gives $E\left[\log f^{n}\right]=\sup _{f \in \mathcal{C}^{n}} E[\log f]$. Finally note that as $E\left[\log f^{n}\right] \geqslant E[\log 1]=0$ we must have $f^{n} \in L_{++}^{0}$.
(d) Now fix an n and we still denote by f^{n} a maximizer for $\sup _{f \in \mathcal{C}^{n}} E[\log f]$ as above. For any $\epsilon \in\left(0, \frac{1}{2}\right]$ and $f \in \mathcal{C}^{n}$, since $(1-\epsilon) f^{n}+\epsilon f$ belongs to \mathcal{C}^{n} due to its convexity, the maximality of f^{n} implies that $E\left[\Delta_{\epsilon}\left(f \mid f^{n}\right)\right] \leqslant 0$ for $\Delta_{\epsilon}\left(f \mid f^{n}\right):=\frac{\log \left((1-\epsilon) f^{n}+\epsilon f\right)-\log f^{n}}{\epsilon}$. Furthermore, on $\left\{f>f^{n}\right\}$ we indeed have $\Delta_{\epsilon}\left(f \mid f^{n}\right)>0$ while on $\left\{f \leqslant f^{n}\right\}$ we can use the inequality $\log y-\log x \leqslant \frac{y-x}{x}$ for all $0<x<y$ to show that (set $y=f^{n}, x=(1-\epsilon) f^{n}+\epsilon f$)

$$
\Delta_{\epsilon}\left(f \mid f^{n}\right) \geqslant-\frac{f^{n}-f}{f^{n}-\epsilon\left(f^{n}-f\right)} \geqslant-\frac{f^{n}-f}{f^{n}-\frac{1}{2}\left(f^{n}-f\right)}=-2 \frac{f^{n}-f}{f^{n}+f} \geqslant-2
$$

where in the second inequality we use the assumption that $\epsilon \leqslant \frac{1}{2}$. Now, by Fatou's lemma, we can derive that

$$
E\left[\liminf _{\epsilon \rightarrow 0} \Delta_{\epsilon}\left(f \mid f^{n}\right)\right]=E\left[\frac{f-f^{n}}{f^{n}}\right] \leqslant \liminf _{\epsilon \rightarrow 0} E\left[\Delta_{\epsilon}\left(f \mid f^{n}\right)\right] \leqslant 0
$$

where in the first equality above we used the fact that $\liminf _{\epsilon \rightarrow 0}(\log ((1-\epsilon) x+\epsilon y)-\log x) / \epsilon=$ $(y-x) / x$. Now we only need to note that $E\left[\frac{f-f^{n}}{f^{n}}\right] \leqslant 0$ is equivalent to $E\left[\frac{f}{f^{n}}\right] \leqslant 1$ and as $\left.h^{n} \in \mathcal{C}^{n} \cap L_{++}^{0}(\operatorname{see} \mathbf{c})\right)$ the random variable $1 / f^{n}$ is well-defined.
(e) Now for each n we obtain an $f^{n} \in \mathcal{C}^{n} \cap L_{++}^{0} \subset \mathcal{C}$ (keep in mind we still assume that $\mathcal{C}=\mathcal{C}^{\prime}$) such that $E\left[f / f^{n}\right] \leqslant 1$ for all $f \in \mathcal{C}^{n}$. Now, we apply the Komlos lemma for the sequence
$\left(f^{n}\right)$ to get a sequence $\left(\tilde{f}^{n}\right)$ and an $\hat{f} \in L_{+}^{0}$ such that \tilde{f}^{n} is a finite convex combination of f^{n}, f^{n+1}, \ldots and \tilde{f}^{n} converges to \hat{f} in probability. The convexity of \mathcal{C} ensures that each \tilde{f}^{n} is in \mathcal{C} and therefore the closedness in probability of \mathcal{C} ensures that $\hat{f} \in \mathcal{C}$. Now, for any $f \in \mathcal{C}^{k}$, for any $n \geqslant k$, since $\mathcal{C}^{k} \subset \mathcal{C}^{n}$, we have $E\left[f / f^{n}\right] \leqslant 1$ and, furthermore, as $x \mapsto \frac{1}{x}$ is convex, Jensen's inequality implies that $E\left[f / \tilde{f}^{n}\right] \leqslant a_{1}^{n} E\left[f / f^{n}\right]+\ldots+a_{N_{n}}^{n} E\left[f / f^{N_{n}}\right] \leqslant a_{1}^{n}+\ldots+a_{N_{n}}^{n}=1$ for $\tilde{f}^{n}:=a_{1}^{n} f_{n}+\ldots+a_{N_{n}}^{n} f_{N_{n}}$ with convex weights $a_{1}^{n}, \ldots a_{N_{n}}^{n}$. This implies that for all $f \in \bigcup_{k \geqslant 1} \mathcal{C}^{k}$, by Fatou's lemma we have $E[f / \hat{f}] \leqslant \liminf _{n \rightarrow \infty} E\left[f / \tilde{f}^{n}\right] \leqslant 1$. In particular, inserting $1 \in \bigcup_{k \geqslant 1} \mathcal{C}^{k}$ we can get $E[1 / \hat{f}] \leqslant 1$, which implies that $\hat{f} \in L_{++}^{0} \cap \mathcal{C}$. Further, Since for any $f \in \mathcal{C}$ we have $f \wedge k \in \mathcal{C}^{k}$, the monotone convergence theorem provides that

$$
E[f / \hat{f}]=\lim _{k \rightarrow \infty} E[(f \wedge k) / \hat{f}] \leqslant 1
$$

Finally, since $\hat{f} \in \mathcal{C}$ and \mathcal{C} is bounded in probability, we must have $\hat{f}<+\infty$ almost surely. Hence $1 / \hat{f}$ is also in L_{++}^{0}.
(f) For a general \mathcal{C} which is convex, closed and bounded in probability and $\mathcal{C} \cap L_{++}^{0} \neq \varnothing$, we first pick any $g \in \mathcal{C} \cap L_{++}^{0}$ and define $\mathcal{C}^{g}:=\{f / g \mid f \in \mathcal{C}\}$. Obviously this set \mathcal{C}^{g} contains the constant 1, and is convex, closed and bounded in probability as well. Now we apply our previous arguments for the solid set $\mathcal{C}^{g, \prime}:=\left\{f \mid f \leqslant h\right.$ for some $\left.h \in \mathcal{C}^{g}\right\}$ and get an element \hat{h} in $\mathcal{C}^{g, \prime}$ such that $E[f / \hat{h}] \leqslant 1$ for all $f \in \mathcal{C}^{g, \prime}$. Clearly this \hat{h} has to be an element in \mathcal{C}^{g}, otherwise we would find a $h \in \mathcal{C}^{g}$ with $h \geqslant \hat{h}$ and $P[h>\hat{h}]>0$, which would yield that $E[f / \hat{h}]>1$. Hence, \hat{h} has the form $\hat{h}=\hat{f} / g$ for some $\hat{f} \in \mathcal{C}$. Finally, since for any $f \in \mathcal{C}$, $E[f / \hat{f}]=E\left[\left(\frac{f}{g}\right) /\left(\frac{\hat{f}}{g}\right)\right]=E\left[\left(\frac{f}{g}\right) / \hat{h}\right] \leqslant 1$, we see that $\hat{f} \in \mathcal{C}$ satisfies all the requirements we want.

Solution 14.4

(a) The decomposability simply means that the market modeled by \mathcal{X} has the switching property. More precisely, the investors on this market are allowed to switch their portfolios at any time $t \in[0, T]$ from X to X^{\prime} if the event A, which is observable up to time t, happens, otherwise they will keep their positions.
(b) Let S be a semimartingale. Clearly then any process in $1+G\left(\Theta_{a d m}^{1}(S)\right)$ is adapted, RCLL, nonnegative and starts at 1 . As 0 is in $\mathcal{X}^{1}=\Theta_{a d m}^{1}(S)$, we must have $1 \in \mathcal{X}^{1}$ which means that \mathcal{X}^{1} contains a strictly positive process. The convexity follows from the convexity of $G\left(\Theta_{a d m}^{1}(S)\right)$. To show the decomposability, pick $X=1+\vartheta^{1} \bullet S$ and $X^{\prime}:=1+\vartheta^{\prime} \bullet S$ from \mathcal{X}^{1}. For any $t \in[0, T]$ and $A \in \mathcal{F}_{t}$, we define $\widetilde{\vartheta}:=1_{[0, t]} \vartheta+1_{(t, T]}\left(1_{A} \frac{X_{t}}{X_{t}^{\prime}} \vartheta^{\prime}+1_{A^{c}} \vartheta\right)$. It is easy to see that $\widetilde{\vartheta}$ is predictable and S-integrable. Furthermore, we have

$$
1+(\widetilde{\vartheta} \bullet S)_{s}=1_{A^{c}} X_{s}+1_{A} \frac{X_{t \vee s}^{\prime}}{X_{t}^{\prime}} X_{t \wedge s}
$$

for all $s \in[0, T]$, which implies that $\tilde{\vartheta} \in \Theta_{a d m}^{1}$ and $\left(1_{A^{c}} X_{s}+1_{A} \frac{X_{t v s}^{\prime}}{X_{t}^{\prime}} X_{t \wedge s}\right)_{s \in[0, T]}$ is in \mathcal{X}^{1}.
(c) Since \mathcal{X} is a wealth process set, it is clear that \mathcal{X}_{T} is convex and $\mathcal{X}_{T} \cap L_{++}^{0} \neq \varnothing$. So, if \mathcal{X}_{T} is closed in probability and satisfies NUPBR, using the result from the previous exercise we can find an $\hat{X}_{T} \in \mathcal{X}_{T}$ which corresponds to the final value of a wealth process \hat{X} such that $E\left[X_{T} / \widehat{X}_{T}\right] \leqslant 1$ holds for all $X \in \mathcal{X}$. Now for any $X \in \mathcal{X}$, for any $t \in[0, T]$, the decomposability ensures that the process

$$
Y_{s}:=\frac{\widehat{X}_{t \vee s}}{\widehat{X}_{t}} X_{t \wedge s}, s \in[0, T]
$$

belongs to \mathcal{X} (choose $A=\Omega$). So from $E\left[Y_{T} / \widehat{X}_{T}\right] \leqslant 1$ it follows that $E\left[X_{t} / \widehat{X}_{t}\right] \leqslant 1$. Hence, for $t \leqslant r$ in $[0, T], A \in \mathcal{F}_{t}$, for any strictly positive process $X^{\prime} \in \mathcal{X}$, since

$$
Y_{s}=1_{A^{c}} \hat{X}_{s}+1_{A} \frac{X_{t \vee s}^{\prime}}{X_{t}^{\prime}} \widehat{X}_{t \wedge s}, s \in[0, T]
$$

is an element in \mathcal{X}, and $Y_{r}=1_{A^{c}}+1_{A} \frac{X_{r}^{\prime}}{X_{t}^{\prime}} \widehat{X}_{t}$ the inequality $E\left[Y_{r} / \widehat{X}_{r}\right] \leqslant 1$ translates into

$$
E\left[1_{A}\left(X_{r}^{\prime} / \hat{X}_{r}\right) /\left(X_{t}^{\prime} / \hat{X}_{t}\right)\right] \leqslant P[A]
$$

which in turn implies that $E\left[\left(X_{r}^{\prime} / \hat{X}_{r}\right) /\left(X_{t}^{\prime} / \hat{X}_{t}\right) \mid \mathcal{F}_{t}\right] \leqslant 1$ and consequently X^{\prime} / \widehat{X} is a supermartingale for all strictly positive X^{\prime} and we can extend this result to all $X \in \mathcal{X}$. Finally note that this \widehat{X} is strictly positive so that $\frac{1}{\widehat{X}}$ is \mathbb{R}-valued, and since $\widehat{X}_{t}<+\infty$, $\frac{1}{\widehat{X}}$ is strictly positive.

