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Solution 14.1 Denote by Z “ pZtqtPr0,T s the density process process of Q with respect to P .

(a) The second claim follows directly from the first claim together with the fact that yZT “
y dQdP P Dpyq since Z P Zp1q and the fact that the function V is decreasing. So it remains
to show the first claim. Seeking a contradiction, suppose there exists YT P Dpyq such
that A :“ tYT ą yZT u has P rAs ą 0. Set a “ QrAs ą 0 and define the Q-martingale
M “ pMtqtPr0,T s by Mt :“ EQr1A | Fts. Then M is non-negative and M0 “ a by the fact
that F0 is P -trivial. By the predictable representation property of S under Q, there exists
H P LpSq such that M “ a`H ‚S. Thus, M P Vpaq. Now, on the one hand, by the definition
of Dpyq, there exists a supermartingale rZ P Zpyq with YT ď rZT . Therefore,

ErMTYT s ď ErMT
rZT s ď ErM0 rZ0s “ ay. (1)

On the other hand,
ErZTMT s “ EQrMT s “M0 “ a. (2)

Thus, we arrive at the contradiction

0 ě ErMT pYT ´ yZT qs “ Er1tYTąyZT upYT ´ yZT qs ą 0. (3)

(b) Note that 0 ď y0 ă 8 and vpyq ă 8 on py0,8q. Moreover, recall that the function V is
strictly decreasing, strictly convex and in C1 on p0,8q.
First, define the function g : py0,8q Ñ r´8, 0s by

gpsq “ ErZTV
1psZT qs. (4)

This is well defined as ZT ą 0 P -a.s. and V 1 ă 0. Moreover, it is increasing as V 1 is increasing.
Thus if gps0q ą ´8 for some s0 ą y0, it follows by dominated convergence that it is continuous
on ps0,8q.
Next, for y1, y2 P py0,8q, y1 ă y2, the fundamental theorem of calculus gives

V py2ZT q ´ V py1ZT q “

ż y2

y1

ZTV
1psZT q ds. (5)

Now, the left-hand side of (5) is integrable by assumption. Thus, the right-hand side is so,
too, and since V 1 ă 0, the integrand on the right-hand side is strictly negative, and Fubini’s
theorem gives

vpy2q ´ vpy1q “

ż y2

y1

gpsq ds. (6)

In particular, the function g is finite a.e. on py0,8q, and thus continuous and finite on py0,8q.
Now the claim follows from the fundamental theorem of calculus.

(c) First, recall that XT P Cpxq if and only if

sup
YT PDp1q

ErXThs ď x. (7)

Updated: December 19, 2017 1 / 5



Mathematical Finance, HS 2017 Solution sheet 14

By part a), this is equivalent to
ErXTZT s ď x. (8)

Now, by part b) and the choice of pypxq,

Er pXTZT s “ Er´V 1ppypxqZT qZT s “ ´v
1ppypxqq “ x, (9)

and so pXT P Cpxq.
Next, fix XT P Cpxq. We may assume without loss of generality that ErUpXT qs ą ´8. By
the fact that pXT ą 0 P -a.s. and U is in C1 and strictly concave on p0,8q,

UpXT q ´ Up pXT q ď U 1p pXT qpXT ´ pXT q, (10)

where the equality is strict on tXT ‰ pXT u. Taking expectations and using the fact that
U 1p´V 1q “ id and (8) and (9) gives

ErUpXT q ´ Up pXT qs ď ErU 1p pXT qpXT ´ pXT qs “ pypxqErZT pXT ´ pXT qs ď 0. (11)

If XT “ pXT P -a.s., then both inequalities are trivially equalities, and if P rXT ‰ pXT s ą 0,
then the first inequality is strict.

Solution 14.2 The situation on which the dual optimizer fails to be of the form

pYT :“ dQ

dP
, (12)

where dQ
dP is the Radon-Nikodym density for some EσMM Q is given by Exercise 7.4. Consider

for instance the logarithmic utility Upxq “ logpxq for which the dual optimization problem is to
minimize

ErV pYT qs “ E
“

´ log pYT q ´ 1
‰

“ ´E
“

log pYT q
‰

´ 1,

or equivalently, maximize
E
“

log pYT q
‰

over YT P Dp1q. Take S :“ Z´1, where Z :“ Xσ^τ , given by Exercise 7.4, fails to be uniformly
integrable martingale and deploy the usual time change t{pT ´ tq to obtain a finite time-horizon T .
Clearly, ZT P Dp1q, but since ErZT s ă 1 it does not define a probability measure, i.e., it fails be of
the form (12). For any YT P Dp1q, the process is a supermartingale starting from Y0S0 “ 1. Hence,
by Jensen’s inequality, we have

ErlogpYT qs “ E

«

log
ˆ

YT
ZT

˙

ff

` ErlogpZT qs ď log
`

ErYTST s
˘

` ErlogpZT qs ď ErlogpZT qs,

i.e.,
vp1q “ ´ErlogpZT qs ´ 1.

Solution 14.3

(a) Since Erf{f̂ s ď 1 holds for all f P C, by the Markov inequality we have for any f P C and any
M ą 0

P r
f

f̂
ěM s ď

1
M
Er
f

f̂
s ď

1
M
,

which indeed implies that the set tf{f̂ |f P Cu is bounded in probability.
Since limMÑ8 P rf̂ ě M s “ 0, from the fact that P rf ě M s “ P r f

f̂
f̂ ě M s ď P r f

f̂
ě

?
M s ` P rf̂ ě

?
M s it follows that C is bounded in probability as well.
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(b) The convexity and boundedness in probability of C1 follow immediately from the definition
of C1 and the corresponding properties of C. So it remains to show that C1 is closed in
probability. Let pfnq be a sequence in C1 convergent to an f P L0

` in probability. By passing to
a subsequence we can and will assume that pfnq converges to f almost surely. By definition for
each n there is an hn in C such that fn ď hn. Since C1 is convex and bounded in probability,
convphn|n ě 1q Ă C1 is also bounded in probability and we can apply the Komlos lemma for
phnq to find a sequence prhnq such that rhn is a finite convex combination of hn, hn`1, ... and rhn
converges to an h in probability. Again, we will assume that this convergence also holds almost
surely. By the closedness of C, we have h P C. Furthermore, if rhn “ an1hn ` ... ` anNn

hNn

for convex weights an1 , ..., anNn
ě 0, an1 ` ... ` anNn

“ 1, then as hm ě fm for all m ě 1 we
indeed have rhn ě rfn with rfn :“ an1fn ` ...` a

n
Nn
fNn

. On the other hand, it is clear that with
fn Ñ f almost surely it holds that rfn Ñ f almost surely. Combining all arguments above we
can conclude that h “ limnÑ8

rhn ě limnÑ8
rfn “ f , which implies that f P C1.

(c) Now we assume that C “ C1 and 1 P C. Then it is clear that for each n ě 1, 1 P Cn and therefore
Cn is nonempty. Moreover, using the same argument as in b) we can easily check that Cn is
closed in probability and convex. Also, since 1 P C, we have supfPCn Erlog f s ě Erlog 1s “ 0.
On the other hand, since each f P Cn satisfies f ď n, we have supfPCn Erlog f s ď logn. Now
let pfmq be a sequence in Cn such that Erlog fms Ò supfPCn Erlog f s as m tends to 8. Using
Komlos lemma for pfmq we obtain a sequence p rfmq and an fn P L0

` such that rfm is a finite
convex combination of fm, fm`1, ... and rfm converges to fn in probability. Since x ÞÑ log x is
a concave function, we have Erlog f̃ms ě Erlog fms for each m (note that we assume Erlog fms
is increasing in m) for all m. Moreover, since Cn is convex and in particular each rfm is in Cn,
it holds that rfm P Cn. As a consequence of the closedness of Cn, we have fn P Cn and by the
inverse Fatou’s lemma (as log f ď logn for all f P Cn) we get

Erlog fns ě lim sup
mÑ8

Erlog rfms ě lim sup
mÑ8

Erlog fms ě sup
fPCn

Erlog f s.

This gives Erlog fns “ supfPCn Erlog f s. Finally note that as Erlog fns ě Erlog 1s “ 0 we
must have fn P L0

``.

(d) Now fix an n and we still denote by fn a maximizer for supfPCn Erlog f s as above. For any
ε P p0, 1

2 s and f P Cn, since p1´ εqfn ` εf belongs to Cn due to its convexity, the maximality

of fn implies that Er∆εpf |f
nqs ď 0 for ∆εpf |f

nq :“ log
`

p1´εqfn
`εf

˘

´log fn

ε . Furthermore,
on tf ą fnu we indeed have ∆εpf |f

nq ą 0 while on tf ď fnu we can use the inequality
log y ´ log x ď y´x

x for all 0 ă x ă y to show that (set y “ fn, x “ p1´ εqfn ` εf)

∆εpf |f
nq ě ´

fn ´ f

fn ´ εpfn ´ fq
ě ´

fn ´ f

fn ´ 1
2 pf

n ´ fq
“ ´2f

n ´ f

fn ` f
ě ´2,

where in the second inequality we use the assumption that ε ď 1
2 . Now, by Fatou’s lemma,

we can derive that

E
“

lim inf
εÑ0

∆εpf |f
nq
‰

“ E
“f ´ fn

fn
‰

ď lim inf
εÑ0

E
“

∆εpf |f
nq
‰

ď 0,

where in the first equality above we used the fact that lim infεÑ0
`

log
`

p1´εqx`εy
˘

´log x
˘

{ε “

py ´ xq{x. Now we only need to note that E
“

f´fn

fn

‰

ď 0 is equivalent to E
“

f
fn

‰

ď 1 and as
hn P Cn X L0

`` (see c)) the random variable 1{fn is well-defined.

(e) Now for each n we obtain an fn P Cn X L0
`` Ă C (keep in mind we still assume that C “ C1)

such that Erf{fns ď 1 for all f P Cn. Now, we apply the Komlos lemma for the sequence
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pfnq to get a sequence p rfnq and an f̂ P L0
` such that rfn is a finite convex combination of fn,

fn`1, ... and rfn converges to f̂ in probability. The convexity of C ensures that each rfn is in C
and therefore the closedness in probability of C ensures that f̂ P C. Now, for any f P Ck, for any
n ě k, since Ck Ă Cn, we have Erf{fns ď 1 and, furthermore, as x ÞÑ 1

x is convex, Jensen’s
inequality implies that Erf{ rfns ď an1Erf{f

ns ` ... ` anNn
Erf{fNns ď an1 ` ... ` anNn

“ 1
for rfn :“ an1fn ` ... ` anNn

fNn
with convex weights an1 , ...anNn

. This implies that for all
f P

Ť

kě1 Ck, by Fatou’s lemma we have Erf{f̂ s ď lim infnÑ8Erf{ rfns ď 1. In particular,
inserting 1 P

Ť

kě1 Ck we can get Er1{f̂ s ď 1, which implies that f̂ P L0
`` X C. Further, Since

for any f P C we have f ^ k P Ck, the monotone convergence theorem provides that

E
“

f{f̂
‰

“ lim
kÑ8

E
“

pf ^ kq{f̂
‰

ď 1.

Finally, since f̂ P C and C is bounded in probability, we must have f̂ ă `8 almost surely.
Hence 1{f̂ is also in L0

``.

(f) For a general C which is convex, closed and bounded in probability and C X L0
`` ‰ H, we

first pick any g P C X L0
`` and define Cg :“

 

f{g|f P C
(

. Obviously this set Cg contains the
constant 1, and is convex, closed and bounded in probability as well. Now we apply our
previous arguments for the solid set Cg,1 :“

 

f |f ď h for some h P Cg
(

and get an element
ĥ in Cg,1 such that Erf{ĥs ď 1 for all f P Cg,1. Clearly this ĥ has to be an element in Cg,
otherwise we would find a h P Cg with h ě ĥ and P rh ą ĥs ą 0, which would yield that
Erf{ĥs ą 1. Hence, ĥ has the form ĥ “ f̂{g for some f̂ P C. Finally, since for any f P C,
E
“

f{f̂
‰

“ E
“

p
f
g q{p

f̂
g q
‰

“ E
“

p
f
g q{ĥ

‰

ď 1, we see that f̂ P C satisfies all the requirements we
want.

Solution 14.4

(a) The decomposability simply means that the market modeled by X has the switching property.
More precisely, the investors on this market are allowed to switch their portfolios at any time
t P r0, T s from X to X 1 if the event A, which is observable up to time t, happens, otherwise
they will keep their positions.

(b) Let S be a semimartingale. Clearly then any process in 1`GpΘ1
admpSqq is adapted, RCLL,

nonnegative and starts at 1. As 0 is in X 1 “ Θ1
admpSq, we must have 1 P X 1 which means

that X 1 contains a strictly positive process. The convexity follows from the convexity of
GpΘ1

admpSqq. To show the decomposability, pick X “ 1` ϑ1 ‚ S and X 1 :“ 1` ϑ1 ‚ S from
X 1. For any t P r0, T s and A P Ft, we define rϑ :“ 1r0,tsϑ` 1pt,T sp1AXt

X1
t
ϑ1 ` 1Acϑq. It is easy

to see that rϑ is predictable and S-integrable. Furthermore, we have

1` prϑ ‚ Sqs “ 1AcXs ` 1A
X 1t_s
X 1t

Xt^s

for all s P r0, T s, which implies that rϑ P Θ1
adm and p1AcXs ` 1AX

1
t_s

X1
t
Xt^sqsPr0,T s is in X 1.

(c) Since X is a wealth process set, it is clear that XT is convex and XT X L0
`` ‰ H. So, if

XT is closed in probability and satisfies NUPBR, using the result from the previous exercise
we can find an pXT P XT which corresponds to the final value of a wealth process pX such
that ErXT { pXT s ď 1 holds for all X P X . Now for any X P X , for any t P r0, T s, the
decomposability ensures that the process

Ys :“
pXt_s

pXt

Xt^s, s P r0, T s
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belongs to X (choose A “ Ω). So from ErYT { pXT s ď 1 it follows that ErXt{ pXts ď 1. Hence,
for t ď r in r0, T s, A P Ft, for any strictly positive process X 1 P X , since

Ys “ 1Ac pXs ` 1A
X 1t_s
X 1t

pXt^s, s P r0, T s

is an element in X , and Yr “ 1Ac ` 1AX
1
r

X1
t

pXt the inequality ErYr{ pXrs ď 1 translates into

E
“

1ApX 1r{ pXrq{pX
1
t{
pXtq

‰

ď P rAs,

which in turn implies that E
“

pX 1r{
pXrq{pX

1
t{
pXtq|Ft

‰

ď 1 and consequently X 1{ pX is a super-
martingale for all strictly positive X 1 and we can extend this result to all X P X . Finally
note that this pX is strictly positive so that 1

xX
is R-valued, and since pXt ă `8, 1

xX
is strictly

positive.
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