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Chapter 1

Introduction and preliminaries

1.1. Models for dynamic phenomena are frequently described by local laws of motion.

Such phenomena are often stochastic in nature, or at least sufficiently complex that it

makes sense to view some of their motion as “noise”. This is in particular true in finance,

where randomness or “noise” is a highly prevalent feature that cannot be ignored. In such

situations, a local law of motion often takes the form of a stochastic differential equation,

such as

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0, (1.1)

where b and σ are suitably regular functions, W is Brownian motion, and x0 ∈ R. For

example, the famous Black–Scholes model is of this form with b(x) = µx and σ(x) = νx

for some constants µ and ν. There are many ways (1.1) can be generalized. For example,

one can increase the dimension of X, allow the coefficients b and σ to depend on the entire

history of X (not just its current value), replace the Brownian motion W by a more general

process, or allow X to exhibit discontinuous trajectories.

The chosen model is only useful if statements can be made about its probabilistic

properties. One would like to be able to compute expectations, variances, average excursion

lengths, or other quantities of interest. In finance this corresponds to risk assessment,

optimal trading decisions, asset valuation, etc. A standard device for performing such

computations is the Feynman–Kac formula, which states that under suitable conditions

and for any T ≥ 0, the solution X of (1.1) satisfies

E[f(XT )] = u(0, x0)
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6 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

for a large class of functions f , where u : [0, T ] × R → R solves the partial differential

equation

ut(t, x) + b(x)ux(t, x) +
1

2
σ(x)2uxx(t, x) = 0, (t, x) ∈ [0, T )× R,

u(T, x) = f(x), x ∈ R.

(The subscripts denote partial derivatives.) A variety of numerical methods exist for solving

such equations. Another common method is Monte-Carlo simulation, which in its basic

form consists of generating a large number of independent replications X
(1)
T , . . . , X

(n)
T of

XT , and then using the law of large numbers to obtain

E[f(XT )] ≈ 1

n

n∑
i=1

f(X
(i)
T ).

However, if the dimensionality of X grows large, or if E[f(XT )] has to be computed a

large number of times (e.g. for different functions f or different coefficients b and σ), such

methods eventually become computationally taxing. It is therefore of interest to look for

classes of processes X and functions f with enhanced tractability. The goal of these notes

is to consider two possibilities:

• Affine jump-diffusions with f(x) = eux where u is constant, and

• Polynomial jump-diffusions with f(x) a polynomial in x.

The scope is surprisingly broad. In finance this leads to models for equities, interest rates,

credit risk, optimal investment, economic equilibrium, etc. We will look at some of these

applications later on.

1.2. Let us consider a basic example of how special structure of X can be used to simplify

the Feynman–Kac formula. Assume X satisfies

dXt = βXtdt+
√
Xt dWt, X0 = x0, (1.2)

for some constants β and x0. We assume that Xt is nonnegative for all t so that the

square-root is well-defined. We aim to compute

E[euXT ]
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for T > 0 and u ∈ R. As an Ansatz, consider the process

Mt = eψ(T−t)Xt , t ≥ 0,

for a smooth function ψ to be determined later. An application of Itô’s formula with the

function f(t, x) = exp(ψ(T − t)x) yields

dMt = Mt

(
−ψ′(T − t)Xt

)
dt+Mtψ(T − t)dXt +

1

2
Mtψ(T − t)2d〈X〉t

= Mt

(
−ψ′(T − t) + βψ(T − t) +

1

2
ψ(T − t)2

)
Xtdt+Mtψ(T − t)

√
XtdWt.

Therefore, if ψ solves the ODE

ψ′ = βψ +
1

2
ψ2, ψ(0) = u, (1.3)

then M is a local martingale with MT = euXT . If it is even a true martingale, we obtain

E[euXT ] = E[MT ] = M0 = eψ(T )x0 .

We see that in order to compute E[euXT ] one does not need to solve a Feynman–Kac type

PDE, but is left with the much easier task of finding the solution of the ODE (1.3).

Remark 1.3. • The above argument is very similar in flavor to the proof of the

Feynman–Kac formula: Make a suitable Ansatz, apply Itô’s formula, identify a deter-

ministic equation acting as (local) martingale condition, and finally take expectations

to express the quantity of interest using the solution of the deterministic equation.

• The special form of dXt played a crucial role. Can you find a more general form of

dXt for which a similar calculation still works?

• We did not verify that (i) X exists, (ii) ψ exists, and (iii) M is a true (not just

local) martingale. These points are delicate because the SDE (1.2) for X and the

ODE (1.3) for ψ both involve non-Lipschitz coefficients. In fact, without any further

conditions, the above computation is not legitimate; try for instance β = 0, x0 = 1,

u = 1, and T ≥ 2.

1.4. The computation in 1.2 captures the essence of the idea behind affine jump-diffusions.

A similar argument based on polynomials rather than exponentials lies at the heart of
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polynomial jump-diffusions. As an exercise, try to compute the second moment E[X2
T ] of

the process in (1.2) by considering the Ansatz Mt = φ(T − t)+ψ(T − t)Xt+π(T − t)X2
t for

suitable functions φ, ψ, and π! In these notes we will develop these ideas is much greater

generality and look at how they can be brought to bear on applications in finance.

1.1 Notation and preliminaries

1.5. We always work on a filtered probability space (Ω,F ,F,P) satisfying the usual con-

ditions. That is, F is P-complete, the filtration F = (Ft)t≥0 is right-continuous, and F0

contains all P-nullsets of F .

1.6. A process X = (Xt)t≥0 is called càdlàg (or RCLL) if all its paths are right-continuous

with left limits. In this case one defines the two processes X− and ∆X by

X0− = X0, Xt− = lim
s↑t

Xs for t > 0,

∆Xt = Xt −Xt− for t ≥ 0.

The process X is of finite variation (FV) if all its paths are of finite variation. If X is càdlàg,

adapted, and of finite variation, we write X ∈ FV, and if in addition X0 = 0, we write

X ∈ FV0. The total variation process Var(X) is again càdlàg and adapted (−→ exercise).

The set of càdlàg local martingales is denoted by Mloc, the subspace of continuous local

martingales by Mc
loc, and we write M0,loc respectively Mc

0,loc if the value at time zero is

zero. We will often deal with multidimensional processes X = (X1, . . . , Xd), in which case

the above notions are applied component-wise. Thus, for instance, X ∈ Mloc then means

that Xi ∈Mloc for i = 1, . . . , d.

Exercise 1.7. Every X ∈ FV0 admits a unique (up to indistinguishability) decomposition

X = A−B with A,B nondecreasing and in FV0 and A+B = Var(X).

1.8. Since the usual conditions hold, every local martingaleX admits a càdlàg modification,

unique up to indistinguishability.1 We always choose such a modification, which has the

advantage that Xt−(ω) and ∆Xt(ω) are well-defined for every (t, ω) ∈ R+ ×Ω. One could

dispense with the usual conditions at the cost of more involved bookkeeping of nullsets.

1See Revuz and Yor (1999, Theorem II.2.9).



Chapter 2

Semimartingales and

characteristics

Before discussing affine and polynomial jump-diffusions, we need to discuss jump-diffusions

(not necessarily polynomial or affine!). This involves elements of the theory of semimartin-

gales, such as special semimartingales and semimartingale characteristics, eventually lead-

ing to the crucial notion of an (extended) generator. While a more parsimonious presenta-

tion would have been possible, it seems worthwhile to develop some aspects of semimartin-

gale theory, which is interesting and useful in its own right.

2.1 Semimartingales

Definition 2.1. A semimartingale is a process of the form X = X0 +M +A, where X0 is

an F0-measurable random variable, M ∈M0,loc, and A ∈ FV0.

Example 2.2. The following are all semimartingales: Any deterministic function of finite

variation; Brownian motion; Brownian motion with drift; Solutions of stochastic differential

equations; Any Lévy process.

Exercise 2.3. (i) Consider the deterministic process Xt =
∑∞

n=1
1
n(−1)n1[tn,∞)(t), t ≥

0, where tn = 1− 1/n. Is X well-defined? Is it a semimartingale?

(ii) Consider the stochastic process Xt =
∑∞

n=1
1
nBn1[tn,∞)(t), t ≥ 0, where tn = 1− 1/n

9
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and {Bn : n ∈ N} is a sequence of iid Bernoulli random variables with P(Bn = 1) =

P(Bn = −1) = 1/2. Is X well-defined? Is it a semimartingale?

2.4. One reason semimartingales are important is because they allow for a rich stochas-

tic integration theory. In fact, the so-called Bichteler-Dellacherie theorem characterizes

semimartingales as good integrators. A different way to characterize semimartingales is via

a compensation property: any suitably regular function f can be assigned a predictable

(see below) process Af ∈ FV such that the compensated process f(X)− f(X0)− Af is a

local martingale. The latter property is the most relevant one for the theory of affine and

polynomial jump-diffusions, while stochastic integration plays a rather indirect role.

2.5. The decomposition X = X0 +M +A is not unique in general. This is because there

exist non-constant finite variation martingales, such as the compensated Poisson process

Xt = Nt − λt, where N is a Poisson process with intensity λ > 0. For this process,

X = 0 + 0 +X, X = 0 +X + 0, and X = 0 + 1
2X + 1

2X are some possible decompositions.

As we will see, a unique decomposition is obtained if A is in addition required to be

predictable.

2.2 Predictability and the Doob–Meyer decomposition

In this section we study the notion of predictability. We start with basic definitions and

properties that follow from measure-theoretic manipulations. We then state (but do not

prove) the important Doob–Meyer decomposition theorem, which we use to obtain compen-

sators of sufficiently integrable increasing processes. Recall that we always work under the

usual conditions.

Definition 2.6. • The predictable σ-algebra is the σ-algebra P on R+ × Ω generated

by all left-continuous adapted processes (viewed as maps from R+ × Ω to R).

• A process X is predictable if the map (t, ω) 7→ Xt(ω) is P-measurable.

2.7. It is often useful to work with stochastic intervals. For example,

[[σ, τ ]] = {(t, ω) ∈ R+ × Ω: σ(ω) ≤ t ≤ τ(ω)}
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for any stopping times σ and τ . Other intervals such as [[σ, τ [[ and [[σ, τ ]] are defined

analogously. The graph of a stopping time τ is [[τ ]] = [[τ, τ ]]. Caution: By definition, all

stochastic intervals are disjoint from {∞} × Ω. In particular, [[0,∞]] = R+ × Ω.

Lemma 2.8. (i) P is generated by all sets of the form {0}×A, with A ∈ F0, and [[0, τ ]],

with τ a stopping time.

(ii) P is generated by all sets of the form {0}×A, with A ∈ F0, and (s, t]×A, with s < t

and A ∈ Fs.

(iii) If X is a predictable process and τ a stopping time, then Xτ is predictable.

(iv) If X ∈ FV0 is predictable, then Var(X) is predictable.

Proof. (i) and (ii): Let P ′ respectively P ′′ be the σ-algebra generated by all sets of the

form in (i) respectively (ii). If G ∈ P ′, then the process X defined by Xt(ω) = 1G(t, ω)

is left-continuous and adapted. Thus P ′ ⊆ P. Moreover, for s < t and A ∈ Fs one has

(s, t] × A = [[0, τ ]] \ [[0, σ]] for the stopping times σ = s1A +∞1Ac and τ = t1A +∞1Ac .

Thus P ′′ ⊆ P ′. Finally, let X be any left-continuous adapted process, and define for each

n ∈ N a process Xn by

Xn
t (ω) = X0(ω)1{0}(t) +

∑
k∈N

Xk2−n(ω)1(k2−n,(k+1)2−n](t).

Each Xn is P ′′-measurable (−→ exercise), and Xn → X pointwise by left-continuity. Thus

X is also P ′′-measurable, and we deduce that P ⊆ P ′′. This proves (i) and (ii).

(iii): If X = 1G is the indicator process of a set G of the form in (i), then stopping X

yields a predictable process (−→ exercise). Now apply the monotone class theorem.

(iv): Write Var(X) = Var(X)− + ∆Var(X). This is predictable because Var(X)− is

left-continuous and adapted, and ∆Var(X) = |∆X| = |X −X−|.

Exercise 2.9. Show that every predictable X ∈ FV0 admits a unique (up to indistin-

guishability) decomposition X = A−B with A,B predictable, nondecreasing, and in FV0.

2.10. The Doob–Meyer decomposition theorem is a cornerstone of continuous time martin-

gale theory. We will not prove this rather difficult result here; several different proofs exist
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in the literature.1 To state the theorem, we need some terminology:

• A process X is said to be of Class (D) if {Xτ : τ is a finite stopping time} is a uni-

formly integrable family.

• A nondecreasing process A ∈ FV0 is called integrable if E[A∞] < ∞. A process

A ∈ FV0 is of integrable variation if E[Var(A)∞] <∞, or equivalently, if the processes

A+ and A− in the decomposition A = A+ −A− of Exercise 1.7 are integrable.

• A process A is locally integrable or of locally integrable variation, respectively, if there

is a sequence (τn) of stopping times, a.s. tending to infinity, such that Aτn satisfies

the corresponding property for each n. We call (τn) a localizing sequence.

Theorem 2.11 (Doob–Meyer decomposition). If X is a càdlàg submartingale of Class (D),

then there exists a unique (up to indistinguishability) predictable process A ∈ FV0 such that

X−A is a uniformly integrable martingale. The process A is nondecreasing and integrable.

Corollary 2.12. Let M ∈Mloc ∩ FV. If M is predictable, then M is a.s. constant.

Proof. We may assume that M0 = 0. For any stopping time τ , M τ is still predictable

by Lemma 2.8(iii). By localization we may therefore assume M is a uniformly integrable

martingale, hence of Class (D) by the stopping theorem. Since M = M + 0 = 0 + M are

two possible Doob–Meyer decompositions of M , the uniqueness assertion in Theorem 2.11

yields M = 0.

Corollary 2.13. Let A ∈ FV0 be of locally integrable variation. Then there exists a unique

(up to indistinguishability) predictable process Ap ∈ FV0 of locally integrable variation,

called the compensator of A, such that A−Ap is a local martingale. If A is nondecreasing,

then so is Ap.

Proof. Uniqueness follows from Corollary 2.12, so let us prove existence. Due to Exer-

cise 2.9 we may assume that A is nondecreasing. Let (τn) be a localizing sequence so

that E[Aτn ] < ∞ for each n. Then each Aτn is a submartingale of Class (D), and Theo-

rem 2.11 yields nondecreasing predictable Bn ∈ FV0 such that Aτn − Bn is a uniformly

1Meyer’s original proof can be found in Meyer (1962, 1963), while Protter (2005, Chapter III.3) presents

a proof based on Bass (1996). See Beiglböck et al. (2012) for a different, more recent approach.
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integrable martingale. By uniqueness (and Lemma 2.8(iii)), (Bn+1)τn = Bn. The process

Ap =
∑∞

n=1B
n1]]τn−1,τn]], where we set τ0 = 0, then satisfies the required properties.

Example 2.14. Let N be a Poisson process with intensity λ > 0. Then its compensator

is Np
t = λt, because Nt−λt is a martingale. On the other hand, if A ∈ FV0 is a continuous

process, then A is automatically predictable, and is therefore equal to its compensator:

Ap = A. This shows why the notion of compensator is only relevant when processes with

jumps are involved.

Exercise 2.15. Exhibit a process A, on a suitable filtered probability space, which lies in

FV0 but is not of locally integrable variation.

2.3 Special semimartingales

2.16. If a semimartingale X has a decomposition X = X0 +M+A where A is predictable,

then this decomposition is unique. Indeed, If X = X0 +M ′+A′ is another decomposition,

then M −M ′ = A′ −A ∈Mloc ∩ FV0, so that Corollary 2.12 yields A′ = A and M ′ = M .

Definition 2.17. A semimartingale X is called special if it admits a decomposition X =

X0 +M +A where A can be chosen predictable. This decomposition (which is unique) is

called the canonical decomposition of X.

Exercise 2.18. Let X = X0 + M + A be a semimartingale. Show that the following

conditions are equivalent:

(i) X is special;

(ii) sups≤ · |Xs −X0| is locally integrable;

(iii) sups≤ · |∆As| is locally integrable; and

(iv) A is of locally integrable variation.

Hints: First prove that sups≤ · |Ms| is locally integrable for any M ∈ Mloc. Then prove

the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i). For the first implications, you may use

that any predictable process in FV0 is of locally integrable variation (c.f. Lemma I.3.10 in

Jacod and Shiryaev (2003)).
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2.4 The structure of local martingales

Definition 2.19. A local martingale M ∈ Mloc is purely discontinuous if MN ∈ M0,loc

for every N ∈Mc
loc. The set of all purely discontinuous local martingales is denotedMd

loc.

2.20. The definition says M ∈ Mloc is purely discontinuous if it is in a certain sense

orthogonal to all continuous local martingales. This does not mean that M is “pure jump”

in the sense of being constant between jumps; see Example 2.21. Nonetheless, a purely

discontinuous local martingale is completely determined by its jumps; see Lemma 2.22.

Note that every M ∈Md
loc starts at zero, so we have no need for the notation “Md

0,loc”.

Example 2.21. The compensated Poisson process Mt = Nt−λt is a purely discontinuous

martingale (careful with the notation: here N denotes a Poisson process with intensity

λ > 0!). This can be seen using stochastic integration theory for general local martingales.

One can also verify this directly using the properties of the Poisson process (−→ exercise).

Lemma 2.22. If M,N ∈Md
loc satisfy ∆M = ∆N , then M = N .

Proof. The process L = M − N is a local martingale with L0 = 0 and ∆L = 0, so that

L ∈ Mc
0,loc. It is also orthogonal to every continuous local martingale, in particular to

itself. Thus L and L2 are both in Mc
0,loc and hence equal to zero.

Theorem 2.23 (Decomposition of local martingales). Every local martingale M admits a

unique (up to indistinguishability) decomposition M = M0 +M c +Md where M c ∈Mc
0,loc

and Md ∈Md
0,loc.

2.24. We will not give a full proof of Theorem 2.23, but rather outline some special cases.

• Recall that H2 denotes the Hilbert space of all L2-bounded martingales M with inner

product (M,N)H2 = E[M∞N∞]. The subspace H2,c of continuous elements is closed,

and its orthogonal complement consists of purely discontinuous martingales; this is

a consequence of the theory of stable subspaces.2 The assertion of Theorem 2.23 for

M ∈ H2 thus follows from the Hilbert space decomposition H2 = H2,c ⊕ (H2,c)⊥.

2See, e.g., Chapter 4.5 in M. Schweizer’s lecture notes on Brownian Motion and Stochastic Calculus.

Alternatively, see Protter (2005, Chapter IV.3).
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• Using this, the general case can be deduced from the following two facts: (i) every

local martingale M can be decomposed into M = M ′ +M ′′, where M ′ has bounded

jumps and M ′′ is of finite variation; and (ii) any local martingale of finite variation

is purely discontinuous. The proofs of both facts are somewhat involved.

• A more intuitive approach is the following: Suppose M has summable and locally

integrable jumps in the sense that the process Jt =
∑

s≤t |∆Ms| is locally integrable.

The process At =
∑

s≤t ∆Ms is then well-defined and of locally integrable variation,

and thus has a compensator Ap by Corollary 2.13. The local martingale Md = A−Ap,
which can be understood as a “compensated sum of jumps”, is purely discontinuous

with the same jumps as M (this requires some effort to prove). Thus M c = M −
Md −M0 is inMc

0,loc, which yields the desired decomposition. One still has to work

rather hard to eliminate the local integrability assumption on J .

2.5 Jump measures and their compensators

Definition 2.25. The jump measure of a d-dimensional càdlàg process X is the random

measure µ on B(R+ × Rd) given by

µ(dt, dξ;ω) =
∑
t>0

1{∆Xt(ω) 6=0}δ(t,∆Xt(ω))(dt, dξ)

2.26. For each ω, one thus has a measure on R+ × Rd consisting of at most countably

many atoms (càdlàg processes have at most countably many jumps), and assigning zero

mass to the set R+ × {0} (jumps of size zero do not count; a zero jump just means the

process did not jump!).

Example 2.27. Let X = N be a Poisson process with intensity λ > 0. Since all jumps

are of size 1, the jump measure µ is concentrated on R+×{1}. If instead X is a compound

Poisson process3 with jump distribution F , then µ is concentrated on R+ × supp(F ).

3Recall that X is a compound Poisson process if Xt =
∑Nt
n=1 Yn, t ≥ 0, where N is a Poisson process

and {Yn}n∈N is an iid sequence independent of N . Thus X is in effect a Poisson process with random jump

sizes.
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Example 2.28. Using the jump measure one can conveniently express a number of quan-

tities related to the jumps of X. For example, the number of jumps over an interval [0, t] is

given by µ([0, t]×Rd), while the sum of squared jump sizes is equal to
∫

[0,t]×R |ξ|
2µ(ds, dξ).

These quantities may of course be infinite. As usual, the dependence on ω is often sup-

pressed.

Remark 2.29. Although we do not use it here, Itô’s formula for a general semimartingale

X can be expressed via its jump measure µ. Without going into the precise meaning of

the terms involved, let us mention that for any C2 function f one has, in the scalar case

d = 1,

f(Xt) = f(X0) +

∫ t

0
f ′(Xs−)dXs +

1

2

∫ t

0
f ′′(Xs−)d[X,X]s

+

∫
[0,t]×R

(
f(Xs− + ξ)− f(Xs−)− f ′(Xs−)ξ − 1

2
f ′′(Xs−)ξ2

)
µX(ds, dξ).

(2.1)

2.30. For some purposes the jump measure µ is too irregular. A smoother object is

another random measure known as the compensator of µ. This is the random measure µp

constructed in the next theorem. The following terminology is used:

• A predictable function is a map F : R+×Ω×Rd → R that is P⊗B(Rd)-measurable. An

example is F (s, ω, ξ) = f(Xs−(ω) + ξ), which appears in (2.1) above (−→ exercise).

• A predictable random measure is a collection of measures {µ(dt, dξ;ω) : ω ∈ Ω} on

B(R+ × Rd) such that
∫

[0,t]×Rd F (t, ξ)µ(dt, dξ), t ≥ 0, is a predictable process for

every predictable function F such that the process is well-defined.

Theorem 2.31. Let µ be the jump measure of a càdlàg adapted process. There exists a

unique (up to indistinguishability) predictable random measure µp, called the compensator

of µ, such that∫
[0,t]×Rd

F (s, ξ)µ(ds, dξ)−
∫

[0,t]×Rd
F (s, ξ)µp(ds, dξ), t ≥ 0,

is a local martingale for any predictable function F such that
∫

[0,t]×Rd |F (s, ξ)|µ(ds, dξ) is

locally integrable.
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2.32. Again we do not give the a proof, only an outline based on the Riesz–Markov–

Kakutani theorem. A different and more general proof is given in Jacod and Shiryaev

(2003, Theorem II.1.8).

(i) By means of a localization argument one reduces to the case E[µ(R+ × Rd)] < ∞,

which means that the expected total number of jumps of X is finite.

(ii) For any f ∈ Cc(R+ × Rd), define the process Af by

Aft =

∫
[0,t]×Rd

f(s, ξ)µ(ds, dξ) =
∑
s≤t

f(s,∆Xs)1{∆Xs 6=0}.

Due to (i) one has Af ∈ FV0 and E[Var(A)∞] ≤ ‖f‖∞E[µ(R+×Rd)] <∞, so that Af

is of integrable variation. In particular, Af∞ is well-defined and finite (up to nullsets).

(iii) Thanks to (ii) and Corollary 2.13, each Af has a unique compensator Bf , which is

nondecreasing if f ≥ 0. Furthermore, since Af is linear in f we have for a, b ∈ R and

f, g ∈ Cc(R+ × R) that

Aaf+bg − (aBf + bBg) = a(Af −Bf ) + b(Ag −Bg) = local martingale.

By uniqueness of compensators it follows that aBf + bBg = Baf+bg. Thus Bf is also

linear in f .

(iv) By (iii), and ignoring issues with nullsets, the map f 7→ Bf
∞(ω) is a positive linear

functional on the space Cc(R+×R) for every ω. The Riesz–Markov–Kakutani theorem

therefore gives, for every ω, a measure µp(dt, dξ;ω) such that

Bf
∞(ω) =

∫
R+×R

f(s, ξ)µp(ds, dξ;ω).

(v) It remains to show that µp has the stated properties, and this is done via the monotone

class theorem.

Exercise 2.33. Let µ be the jump measure associated with a Poisson process X = N with

intensity λ > 0. Show that the compensator of µ is given by µp(dt, dξ) = λ δ{1}(dξ)dt. In

particular µp is deterministic.
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2.6 Special semimartingale characteristics

Definition 2.34. Consider a d-dimensional special semimartingale with canonical decom-

position X = X0 +M+B. Let M = M c+Md be the decomposition of M in its continuous

and purely discontinuous parts, and let C = 〈M c,M c〉 be the quadratic variation of M c.4

Let µ be the jump measure of X and µp its compensator. The triplet (B,C, µp) is called

the characteristics of X.

Remark 2.35. Characteristics (B,C, µp) can also be defined for non-special semimartin-

gales X, although we will not use this. As before, µp is the compensator of the jump

measure of X. To obtain B and C, one fixes a truncation function, i.e. a bounded measur-

able function h : R → R with h(ξ) = ξ in a neighborhood of the origin. One then defines

X̂(h)t =
∑

s≤t(∆Xs−h(∆Xs)) and X(h) = X−X̂(h). Then X̂(h) is càdlàg, adapted, and

of finite variation, hence a semimartingale. Thus X(h) is also a semimartingale, and since

its jumps are bounded it is a special semimartingale by Exercise 2.18(ii). One then lets B

and C be first two characteristics of X(h). One can show that B, but not C, depends on

the choice of truncation function.

Lemma 2.36. Let X be a special semimartingale with characteristics (B,C, µp). Then

∆Bt =

∫
Rd
ξµp({t}, dξ), (2.2)

Ct − Cs is symmetric positive semidefinite for all s ≤ t, (2.3)∫
[0,t]×R

|ξ|2 ∧ |ξ|µp(ds, dξ) is locally integrable and µp({t} × Rd) ≤ 1. (2.4)

Sketch of proof. We do not prove (2.2), as this requires additional tools. To see (2.3), use

bilinearity of the quadratic covariation to get

〈x1M
c,1 + · · ·+ xdM

c,d〉 =
d∑

i,j=1

xixj〈M c,i,M c,j〉 =
d∑

i,j=1

xixjC
ij

for any real x1, . . . , xd. The left-hand side is nondecreasing, so positive semidefiniteness

of the increments of C follows. Symmetry follows from symmetry of the quadratic co-

variations. Finally, consider (2.4). Since only one jump can occur at a time, we have

4Thus C is a predictable matrix-valued process whose (i, j)th component is Cij = 〈Mc,i,Mc,j〉.
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µ({t} × Rd) ≤ 1, which can be shown to imply µp({t} × Rd) ≤ 1. The integrability state-

ment follows from the fact that sups≤ · |Xs − X0| is locally integrable (see Exercise 2.18)

and that
∑

s≤t(∆Xs)
2 < ∞ for all t ≥ 0. The latter is an important result in stochastic

integration, which we do not prove here.

Theorem 2.37. Let X be a càdlàg adapted process, and let (B,C, µp) be a triplet with B,C

predictable in FV0 and µp a predictable random measure, satisfying (2.2)–(2.4). Then X

is a special semimartingale with characteristics (B,C, µp) if and only if

f(Xt)− f(X0)−
∫ t

0
∇f(Xs−)>dBs −

1

2

∫ t

0
Tr(∇2f(Xs−)dCs)

−
∫

[0,t]×R

(
f(Xs− + ξ)− f(Xs−)−∇f(Xs−)>ξ

)
µp(ds, dξ), t ≥ 0,

is a local martingale for every bounded C2 function f : Rd → R.

2.7 Jump-diffusions and generators

2.38. We may now finally define jump-diffusions, which are semimartingales whose char-

acteristics are of a particular form. We only consider the case of special semimartingales,

although the non-special case can be treated as well using truncation functions; cf. Re-

mark 2.35.

Definition 2.39. Let X be a d-dimensional special semimartingale. We say that X is a

(time-homogeneous) jump-diffusion if its characteristics (B,C, µp) are of the form

Bt =

∫ t

0
b(Xs) ds, Ct =

∫ t

0
a(Xs) ds, µp(dt, dξ) = ν(Xt−, dξ)dt

for some measurable functions b : Rd → Rd and a : Rd → Rd×d, and a kernel ν(x, dξ)

from Rd into Rd such that a(x) is symmetric positive semidefinite, ν(x, {0}) = 0, and∫
Rd |ξ|

2 ∧ |ξ|ν(x, dξ) <∞ for all x ∈ Rd. We refer to (b, a, ν) as the coefficients of X.

Remark 2.40. • The coefficients need not be uniquely determined. For instance, if

X never visits a certain point x ∈ Rd, then one can modify b(x), a(x), and ν(x, dξ)

and obtain another set of valid coefficients.
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• In these notes, every jump-diffusion is a special semimartingale, even if we sometimes

may neglect to say so explicitly. Warning: In most sources, jump-diffusions are not

required to be special (though they are always semimartingales).

Example 2.41. Each of the following processes is a jump-diffusion.

(i) Brownian motion. The coefficients are constant and given by b = 0, a = 1, ν = 0.

(ii) The Poisson process N with intensity λ > 0. Its canonical decomposition is Nt =

0 + (Nt − λt) + λt. Hence N is a jump-diffusion whose coefficients are constant and

given by b = λ, a = 0, ν(x, dξ) = λδ1(dξ); cf. Exercise 2.33.

(iii) The compound Poisson process Xt =
∑Nt

n=1 Yn, if the jump sizes Yn are integrable.

Its canonical decomposition is then (−→ exercise)

Xt = 0 +

(
Nt∑
n=1

Yn − λE[Y1]t

)
+ λE[Y1]t.

Moreover, its jump measure has compensator µp(dt, dξ) = λF (dξ)dt, where F (dξ) is

the law of Y1 (−→ exercise). Therefore X is a jump-diffusion with coefficients a = 0,

b = λE[Y1], and ν(x, dξ) = λF (dξ).

(iv) Solutions of SDEs of the form dXt = b(Xt)dt + σ(Xt)dWt. Indeed, the canonical

decomposition is by construction given by

Xt = X0 +

∫ t

0
σ(Xs)dWs +

∫ t

0
b(Xs)ds,

which is a jump-diffusion with coefficients b(x) = b(x) (!), a(x) = σ(x)2, ν = 0.

2.42. For measurable A ⊆ Rd, the jump coefficient ν(x,A) can be interpreted as the

instantaneous arrival intensity of jumps whose sizes lie in A, given that Xt− = x. Exam-

ple 2.41(ii)–(iii) make this interpretation more concrete in the case of state-independent

jumps, i.e., when ν(x, dξ) does not depend on x.

Definition 2.43. Let X be a jump-diffusion with coefficients (b, a, ν). The generator of

X (also called extended generator or Dynkin operator) is the operator G defined by

Gf(x) = b(x)>∇f(x) +
1

2
Tr(a(x)∇2f(x)) +

∫
Rd

(
f(x+ ξ)− f(x)− ξ>∇f(x)

)
ν(x, dξ)

(2.5)
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for any C2 function f such that the integral is well-defined.

The following property of the generator will be extremely useful for us.

Lemma 2.44. Let X be a jump-diffusion with coefficients (b, a, ν) and generator G. Then

the process Mf given by

Mf
t = f(Xt)− f(X0)−

∫ t

0
Gf(Xs)ds (2.6)

is well-defined and a local martingale for any C2 function f : Rd → R such that∫ t

0

∫
Rd

∣∣∣f(Xs + ξ)− f(Xs)− ξ>∇f(Xs)
∣∣∣ ν(Xs, dξ)ds <∞, t ≥ 0. (2.7)

Proof. Let X = X0 + M + B be the canonical decomposition of X, and M = M c + Md

the decomposition of the local martingale part into continuous and purely discontinuous

components. Itô’s formula5 for general semimartingales states that

f(Xt) = f(X0) +

d∑
i=1

∫ t

0
Dif(Xs−)dXs +

1

2

d∑
i,j=1

∫ t

0
D2
ijf(Xs−)d〈M c,i,M c,j〉s

+
∑

0<s≤t

(
f(Xs)− f(Xs−)−∆X>s ∇f(Xs−)

)
, t ≥ 0.

Since X is a jump-diffusion with generator G, the same thing can be written in different

notation as

f(Xt) = f(X0) +

∫ t

0
Gf(Xs)ds+

d∑
i=1

∫ t

0
Dif(Xs−)dM i

s

+

∫
[0,t]×Rd

F (s, ξ)µ(ds, dξ)−
∫

[0,t]×Rd
F (s, ξ)µp(ds, dξ), t ≥ 0,

where we define the predictable function F (s, ξ) = f(Xs− + ξ) − f(Xs−) − ξ>∇f(Xs−).

We must show that the last three terms together form a local martingale. Stochastic

integration theory tells us that each integral with respect to M i is a local martingale.

Moreover, Theorem 2.31 gives that the last two terms form a local martingale, if we can

5See e.g. Jacod and Shiryaev (2003, Theorem I.4.57).
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show that
∫

[0,t]×Rd |F (s, ξ)|µ(ds, dξ) is locally integrable. This however follows from the

assumption (2.7) along with the following fact (−→ exercise):

For any predictable function G ≥ 0,
∫

[0,t]×Rd G(s, ξ)µ(ds, dξ) is locally

integrable if and only if
∫

[0,t]×Rd G(s, ξ)µp(ds, dξ) is locally integrable.

This completes the proof.

Remark 2.45. • If the function f in Lemma 2.44 were in addition bounded, the result

would have followed immediately from the forward implication of Theorem 2.37. This

does not really save us any work however, because the argument given above is exactly

how the forward implication of Theorem 2.37 is proved (up to replacing
∫ t

0 Gf(Xs)ds

by the appropriate expression involving the characteristics (B,C, µp) of X).

• The reverse implication of Theorem 2.37 can be used to show the following: If X

is a càdlàg adapted process and G an operator of the form (2.5) for some coeffi-

cients (b, a, ν) as in Definition 2.39 such that (2.6) is well-defined (in the sense that∫ t
0 |Gf(Xs)|ds <∞ for all t ≥ 0) and a local martingale for every bounded C2 function

f : Rd → R, then X a special semimartingale and a jump-diffusion with coefficients

(b, a, ν) and generator G.

• Due to Lemma 2.44, jump-diffusions are closely connected to martingale problems

and Markov processes. Why is it intuitive that jump-diffusions are typically Markov

processes?



Chapter 3

Polynomial and affine

jump-diffusions

We are now in a position to define and study the central objects of these notes: polynomial

jump-diffusions (PJDs) and affine jump-diffusions (AJDs). The basic ingredient is a jump-

diffusion taking values in a given subset E ⊆ Rd called the state space. Typical examples

of state spaces are the

• Euclidean space E = Rd,

• nonnegative orthant E = Rd+,

• unit cube E = [0, 1]d,

• unit simplex E = ∆d−1 = {x ∈ [0, 1]d : x1 + · · ·+ xd = 1},

• unit sphere E = Sd−1 = {x ∈ Rd : |x| = 1},

• unit ball E = Bd = {x ∈ Rd : |x| ≤ 1},

• symmetric and positive semidefinite m×m matrices E = Sm+ , viewed as a subset of

Rd with d = m(m+ 1)/2,

as well as cartesian products of such spaces.

Throughout this chapter we fix a state space E ⊆ Rd and an E-valued jump-diffusion

X with coefficients (b, a, ν) and generator G given by (2.5). Roughly speaking, X is called

23
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polynomial if G maps any polynomial p of degree at most n to another polynomial Gp of

degree at most n, for every n. It is called affine if G maps the function x 7→ fu(x) = eu
>x

to a function x 7→ Gfu(x) = R(u, x)eu
>x, for every imaginary vector u ∈ iRd, where R(u, x)

is affine in x. Some care is needed in making these definitions precise, due to subtleties in

the notions of polynomial and degree.

3.1 PJDs: Definition and characterization

Definition 3.1. • For a multi-index α = (α1, . . . , αd) ∈ Nd0, we write |α| = α1+· · ·+αd
and xα = xα1

1 · · ·x
αd
d for x ∈ Rd.

• A polynomial (or more accurately, a polynomial function) on Rd is a function p : Rd →
R of the form

p(x) =
∑
α∈Nd0

cαx
α,

where only finitely many of the constants cα ∈ R are nonzero. Such a representation

is unique. The degree of p, denoted deg(p), is the largest |α| such that cα 6= 0. If p

is the zero polynomial, then deg(p) = −∞. We define

Pol(Rd) = {all polynomials on Rd},

Poln(Rd) = {p ∈ Pol(Rd) : deg(p) ≤ n}, n ∈ N0.

• A polynomial on E is the restriction p = q|E to E of some q ∈ Pol(Rd). Its degree is

deg(p) = min{deg q : p = q|E , q ∈ Pol(Rd)}. We define

Pol(E) = {all polynomials on E},

Poln(Rd) = {p ∈ Pol(E) : deg(p) ≤ n}, n ∈ N0.

Although slightly inaccurate, it is very convenient to write f ∈ Poln(E) for any

function f = (f1, . . . , fk) : Rd → Rk such that fi|E ∈ Poln(E) for i = 1, . . . , k.

• The operator G is said to be well-defined on Pol(E) if∫
Rd
|ξ|n ν(x, dξ) <∞ for all x ∈ E and all n ≥ 2, and (3.1)

Gf = 0 on E for any f ∈ Pol(Rd) with f = 0 on E. (3.2)
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Exercise 3.2. When and why do we need to worry about the distinction between Pol(E)

and Pol(Rd)? The following exercises illustrate the potential issues.

• Assume E contains a nonempty open set. Show that for every p ∈ Pol(E) there exists

exactly one q ∈ Pol(Rd) such that p = q|E . In particular, deg(p) = deg(q). Deduce

that Poln(E) and Poln(Rd) are isomorphic as vector spaces for each n ∈ N0.1

• Let E = {0} be a singleton. Show that every p ∈ Pol(E) is either the zero polynomial

or has degree zero, deg(p) = 0. Show that Pol(E) is isomorphic to R.

• Let E = S1 ⊂ R2 be the unit circle in the plane. What is the degree deg(p) of the

polynomial p ∈ Pol(E) given by p(x1, x2) = x4
1 + x4

2 + 2x2
1x

2
2?

• Let E = R× {0} ⊂ R2 and define Gf(x1, x2) = D2f(x1, x2) + 1
2D

2
11f(x1, x2). Is this

operator well-defined on Pol(E)?

• Find an example of a non-trivial second order differential operator G that is well-

defined on Pol(E), where E = S1 ⊂ R2.

Exercise 3.3. As noted above, Poln(Rd) is a vector space for each n ∈ N0. Show that its

dimension is given by
(
n+d
n

)
. Hint: As a basis for Poln(Rd), take the monomials xα with

|α| ≤ n. Writing this as 1α0xα1
1 · · ·x

αd
d , the question boils down to counting the number of

multi-indices (α0, . . . , αd) ∈ Nd+1
0 with α0 + · · ·+ αd = n.

3.4. If the generator G is well-defined on Pol(E), it is possible to let it act on polynomials

p ∈ Pol(E). Indeed, if p = q|E for some q ∈ Pol(Rd), condition (3.1) ensures that Gq(x)

makes sense for all x ∈ E. Moreover, if r ∈ Pol(Rd) is another representative of p in the

sense that p = r|E , then condition (3.2) ensures that Gr(x) = Gq(x) for all x ∈ E. We may

therefore define Gp(x) = Gq(x) for all x ∈ E without ambiguity.

Definition 3.5. The operator G is called polynomial on E if it is well-defined on Pol(E) and

maps Poln(E) to itself for each n ∈ N. In this case, we call X a polynomial jump-diffusion

on E.

Proposition 3.6. Assume G is well-defined on Pol(E). Then the following are equivalent:

1Recall that two vector spaces V and W are isomorphic if there exists a linear bijection T : V →W .
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(i) G is polynomial on E;

(ii) The coefficients (b, a, ν) satisfy

b ∈ Pol1(E), (3.3)

a+

∫
Rd
ξξ>ν( · , dξ) ∈ Pol2(E), (3.4)∫

Rd
ξαν( · , dξ) ∈ Pol|α|(E), (3.5)

for all |α| ≥ 3.

In this case, the polynomials on E in (3.3)–(3.5) are uniquely determined by the action of

G on Pol(E). Moreover, a, b, and
∫
Rd ξ

αν( · , dξ) are locally bounded on E for all |α| ≥ 2.

Notice the notational shortcut: a more pedantic statement of (3.3) would be “bi|E ∈
Pol1(E) for i = 1 . . . , d”, and similarly for (3.4)–(3.5). This would soon become tedious,

which is why the simplified but slightly inaccurate notation is used. Nonetheless, the proof

of Proposition 3.6 will take the pedantic approach to emphasize the subtleties involved.

First, we need some basic facts about degrees of polynomials on E.

Lemma 3.7. For any p, q ∈ Pol(E) we have deg(p + q) ≤ max{deg(p), deg(q)} and

deg(pq) ≤ deg(p) + deg(q).

Proof. By definition there exist r, s ∈ Pol(Rd) such that p = r|E , deg(p) = deg(r), and

q = s|E , deg(q) = deg(s). We then get

deg(p+ q) ≤ deg(r + s) ≤ max{deg(r),deg(s)} = max{deg(p),deg(q)},

where the first inequality uses the definition of deg(p+ q), the second inequality is a basic

fact about polynomials on Rd, and the equality follows from the choice of r and s. We

similarly get

deg(pq) ≤ deg(rs) = deg(r) + deg(s) = deg(p) + deg(q),

as claimed.

Proof of Proposition 3.6. It is useful to express G, given in (2.5), in the equivalent form

Gf(x) = b(x)>∇f(x) +
1

2
Tr

((
a(x) +

∫
Rd
ξξ>ν(x, dξ)

)
∇2f(x)

)
+

∫
Rd

(
f(x+ ξ)− f(x)− ξ>∇f(x)− 1

2
ξ>∇2f(x)ξ

)
ν(x, dξ),

(3.6)
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for any f ∈ Pol(Rd) and x ∈ E, which is permissible since G is well-defined on E and in

particular satisfies (3.1).

We first prove (ii) ⇒ (i). Fix any n ∈ N and p ∈ Poln(E), and choose f ∈ Poln(Rd)
such that p = f |E . We need to show that (Gf)|E ∈ Poln(E). Since polynomials lose

degree when differentiated, we have Dif |E ∈ Poln−1(E) and D2
ijf |E ∈ Poln−2(E) for

i, j = 1, . . . , d. Therefore, using (3.3)–(3.4) and Lemma 3.7, the map

E → R, x 7→ b(x)>∇f(x) +
1

2
Tr

((
a(x) +

∫
Rd
ξξ>ν(x, dξ)

)
∇2f(x)

)
,

is in Poln(E). Next, note that f is a linear combination of monomials on Rd of the form

xα with |α| ≤ n. The multi-binomial theorem2 thus implies that the expression

f(x+ ξ)− f(x)− ξ>∇f(x)− 1

2
ξ>∇2f(x)ξ

is a linear combination of terms of the form xαξβ with |β| ≥ 3 and |α|+ |β| ≤ n. Due to

(3.5) and Lemma 3.7, we have that the maps

E → R, x 7→ xα
∫
Rd
ξβν(x, dξ)

lie in Pol|α|+|β|(E) ⊆ Poln(E). Summing up all the terms and using Lemma 3.7, we finally

deduce that (Gf)|E ∈ Poln(E), as required.

The reverse implication (i) ⇒ (ii) is proved by applying G to monomials. Fix i ∈
{1, . . . , d} and define f ∈ Pol1(Rd) by f(x) = xi. Then Gf = bi. On the other hand, since

f |E ∈ Pol1(E), (i) gives (Gf)|E ∈ Pol1(E). We deduce (3.3). Similarly, with f(x) = xixj ,

we have

Gf(x) = xibj(x) + xjbi(x) + aij(x) +

∫
Rd
ξiξjν(x, dξ),

using also that a(x) is a symmetric matrix. As before this yields (3.4). Next, set f(x) = xγ

with |γ| ≥ 3. A slightly more careful use of the multi-binomial theorem gives

f(x+ ξ)− f(x)− ξ>∇f(x)− 1

2
ξ>∇2f(x)ξ = ξγ +

∑
3≤|α|<|γ|

|β|+|α|≤|γ|

cβ,α x
βξα (3.7)

2The multi-binomial theorem states that (x+ ξ)α =
∑

β≤α

(
α
β

)
xβξα−β, where the multi-binomial coef-

ficients are defined by
(
α
β

)
=
∏d
i=1

(
αi
βi

)
.
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for some coefficients cβ,α. Thus, if (3.5) has been proved for all α with 3 ≤ |α| < |γ|, we

rearrange (3.6) and use (3.3)–(3.4) and (3.7) to obtain∫
Rd
ξγν(x, dξ) = Gf(x) + p(x), x ∈ E,

for some p ∈ Pol|γ|(E). Thus (3.5) holds also for α = γ. The base case |α| = 3 is clear since

(3.7) is then simply equal to ξα. It follows by induction that (3.5) holds for all |α| ≥ 3, as

claimed.

As a by-product of the above proof, we see that the polynomials on E listed in prop-

erty (ii) are uniquely determined by the action of G on Pol(E). All that remains to show

is that a and
∫
Rd |ξ|

2ν( · , dξ) are locally bounded on E. But a(x) ∈ Sd+ for all x ∈ E, and

hence has nonnegative diagonal entries. Since aii+
∫
Rd ξ

2
i ν(·, dξ) ∈ Pol2(E) for i = 1, . . . , d,

it follows that both Tr(a) and
∫
Rd |ξ|

2ν( · , dξ) are locally bounded on E. Then a is also

locally bounded on E, due to the inequality ‖A‖2F ≤ Tr(A)2 for any A ∈ Sd+, where ‖ · ‖F
denotes the Frobenius norm (−→ exercise).

Example 3.8. Let d = 1 and consider the SDE

dXt = (b+ βXt)dt+
√
a+ αXt +AX2

t dWt

for some real parameters b, β, a, α,A. The state space E depends on the parameters, and

must be such that a + αX + AX2 ≥ 0. Any E-valued solution of this equation is a

polynomial diffusion (i.e., a PJD without jumps) by Proposition 3.6. Conversely, one can

show that every one-dimensional polynomial diffusion is the solution of an equation of this

form. Up to affine transformations of X, there are three main cases:

(i) E = R with b, β unconstrained, a > 0, α = 0, and A ≥ 0. This covers in particular

Brownian motion with drift (β = A = 0) as well as the Ornstein–Uhlenbeck process

(A = 0).

(ii) E = R+ with b ≥ 0, β unconstrained, a = 0, α ≥ 0, and A ≥ 0. This covers in

particular the square-root process (a = A = 0, also known as the Cox–Ingersoll–

Ross, or CIR, process), geometric Brownian motion (b = a = α = 0), and GARCH

diffusion (a = α = 0).

(iii) E = [0, 1] with b ≥ 0, b+β ≤ 0, a = 0, and A = −α, so that a+αx+Ax2 = αx(1−x).

This is known as the Jacobi process.



3.2. THE MOMENT FORMULA 29

3.2 The moment formula

3.9. Our next goal is to establish the moment formula, which describes how to calculate

conditional expectations of the form E[p(XT ) | Ft] where X is a PJD and p is a polynomial.

This is the most important result about PJDs. The following example illustrates the basic

idea. Suppose, for this example only, that X solves the SDE

dXt = βXtdt+
√
XtdWt, X0 = x0.

This is the SDE we looked at in the introduction. By Itô’s formula, the squared process

satisfies dX2
t = (Xt + 2βX2

t )dt+ 2X
3/2
t dWt. Writing this in integral form, we get(

Xt

X2
t

)
=

(
x0

x2
0

)
+

∫ t

0

(
β 0

1 2β

)(
Xs

X2
s

)
ds+

∫ t

0

( √
Xs

2X
3/2
s

)
dWs.

Now take expectations on both sides. Assuming that the local martingale term is a true

martingale, and that we may interchange time integral and expectation, this gives(
E[Xt]

E[X2
t ]

)
=

(
x0

x2
0

)
+

∫ t

0

(
β 0

1 2β

)(
E[Xs]

E[X2
s ]

)
ds.

This is a deterministic linear ODE, whose solution can be written down in closed form,(
E[Xt]

E[X2
t ]

)
= exp

(
t

(
β 0

1 2β

))(
x0

x2
0

)
.

We have thus computed all expectations E[p(Xt)] for p ∈ Pol2(R). Note that we ignored

several points: (i) we only looked at a specific one-dimensional diffusion; (ii) we only

considered deterministic initial conditions X0 = x0; (iii) only the unconditional moments

were computed; (iv) we never verified the true martingale property; (v) we only considered

moments up to order two.

3.10. We now return to the general situation, where we fix a state space E ⊆ Rd and

an E-valued jump-diffusion X with coefficients (b, a, ν) and generator G given by (2.5).

Assume that G is polynomial on E, so that X is a PJD on E. Fix n ∈ N and set

N = dim Poln(E) − 1. By Exercise 3.3 we have 1 + N =
(
n+d
d

)
if E = Rd, but N may be

smaller in general. Choose N polynomials

h1, . . . , hN ∈ Poln(Rd)
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such that

1, h1|E , . . . , hN |E form a basis for Poln(E). (3.8)

Define the (row) vector valued function

H : Rd → RN , H(x) = (h1(x), . . . , hN (x)). (3.9)

Every p ∈ Poln(E) has a coordinate representation with respect to the basis in (3.8), and

we denote its coordinate (column) vector by ~p ∈ R1+N . Thus

p(x) = (1, H(x))~p, x ∈ E. (3.10)

Since G is polynomial, it maps Poln(E) linearly to itself. This linear map has a matrix

representation G ∈ R(1+N)×(1+N) with respect to the basis in (3.8), determined by

G(1, H)(x) = (1, H(x))G, x ∈ E,

where G is understood to act componentwise on the function (1, H). In particular, we have

Gp(x) = (1, H(x))G~p, x ∈ E. (3.11)

3.11. The moment formula uses the notion of generalized conditional expectation, which

is defined for any σ-field F ′ ⊆ F and all random variables Y (not just the integrable or

nonnegative ones) by

E[Y | F ′] =

E[Y + | F ′]− E[Y − | F ′], on {E[|Y | | F ′] <∞},

+∞, elsewhere.

In particular, E[Y | σ(Y )] = Y for any random variable Y .

Theorem 3.12. Assume G is polynomial on E. Then for any p ∈ Poln(E) with coordinate

vector ~p ∈ R1+N , the moment formula holds,

E[p(XT ) | Ft] = (1, H(Xt))e
(T−t)G ~p, for t ≤ T .

3.13. According to Theorem 3.12, the Ft-conditional expectation of p(XT ) is a polynomial

q(Xt) in Xt with coefficient vector ~q = e(T−t)G ~p. This vector can be computed numerically

either by directly evaluating the matrix exponential, or by solving the linear ODE in R1+N ,

f ′ = Gf, f(0) = ~p,

and setting ~q = f(T − t).
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Example 3.14. Theorem 3.12 implies that XT has finite Ft-conditional moments of all

orders. This does not imply that XT has finite unconditional moments. For example, it

can be shown that the GARCH diffusion dXt = κ(θ−Xt) dt+
√

2κXt dWt with κ, θ > 0 has

a unique stationary solution, which is a polynomial diffusion on E = R+. The distribution

of XT is an inverse Gamma distribution with shape parameter 2 and scale parameter 1/θ.

We then have E[XT ] = θ and E[X2
T ] = +∞.3 This example motivates the use of generalized

conditional expectations.

Example 3.15. Consider the one-dimensional polynomial diffusion from Example 3.8,

dXt = (b+ βXt)dt+
√
a+ αXt +AX2

t dWt

for some real parameters b, β, a, α,A. Its generator is

Gf(x) = (b+ βx)f ′(x) +
1

2
(a+ αx+Ax2)f ′′(x).

Except in trivial cases, E contains a nonempty open interval and we may work with the

monomial basis 1, x, . . . , xn. The columns of the matrix G are then the coordinate vectors

of G(xk) for k = 0, . . . , n. Here G(xk) is shorthand for Gp with p(x) = xk. Since

G(xk) = k(k − 1)
a

2
xk−2 + k

(
b+ (k − 1)

α

2

)
xk−1 + k

(
β + (k − 1)

A

2

)
xk

for k ≥ 0, we infer that

G =



0 b 2a2 0 · · · 0

0 β 2
(
b+ α

2

)
3 · 2a2 0

...

0 0 2
(
β + A

2

)
3
(
b+ 2α2

) . . . 0

0 0 0 3
(
β + 2A2

) . . . n(n− 1)a2
... 0

. . . n
(
b+ (n− 1)α2

)
0 . . . 0 n

(
β + (n− 1)A2

)


.

This illustrates how the matrix G can be computed.

3See Forman and Sørensen (2008, Case 4) for further details.
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The rest of this section is devoted to the proof of Theorem 3.12, which in principle is

straightforward but requires some technical developments. For the rest of this section, we

assume that G is polynomial on E. Then the process

Mf
t = f(Xt)− f(X0)−

∫ t

0
Gf(Xs) ds, t ≥ 0,

is well defined for any f ∈ Pol(E).

Lemma 3.16. Mf
t is a local martingale for any f ∈ Pol(E).

Proof. Note that W (x, ξ) = f(x+ξ)−f(x)−ξ>∇f(x) is a linear combination of monomials

xβξγ with 2 ≤ |γ| ≤ n. Hence |W (x, ξ)| ≤ C(x)
(
|ξ|2 + |ξ|2n

)
for some polynomial C(x).

It follows that
∫ t

0

∫
Rd |W (Xs, ξ)|ν(Xs, dξ)ds < ∞ thanks to Proposition 3.6. Lemma 2.44

then gives the result.

The quadratic variation of a semimartingale Y is a nondecreasing process given by

[Y, Y ] = Y 2−Y 2
0 −2

∫
Y−dY . If Y = M ∈M0,loc then M2− [M,M ] = 2

∫
M−dM ∈M0,loc

as well. This is used in the proof of the following lemma, which will let us work with the

compensator of [M,M ] rather than [M,M ] itself.

Lemma 3.17. If M ∈M0,loc, A ∈ FV0 is nondecreasing, and M2 −A ∈M0,loc, then

E[sup
t≤T

M2
t ] ≤ 4E[AT ], T ≥ 0.

Proof. Fix any T ≥ 0. Let (τm) be a localizing sequence for M and M2 − [M,M ]. Doob’s

inequality gives

E[ sup
t≤T∧τm

M2
t ] ≤ 4E[M2

T∧τm ] = 4E[[M,M ]T∧τm ].

Sending m to infinity and using the monotone convergence theorem we get

E[sup
t≤T

M2
t ] ≤ 4E[[M,M ]T ].

Next, we have [M,M ]−A = (M2 −A)− (M2 − [M,M ]) ∈Mloc. Let (τm) be a localizing

sequence. Then E[[M,M ]T∧τm ] = E[AT∧τn ].

We next identify a suitable such process A for the local martingale Mf .
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Lemma 3.18. Let f ∈ Pol(E) and define Γ(f, f) = G(f2) − 2fGf . Then Γ(f, f)(x) ≥ 0

for all x ∈ E, and

(Mf )2 −
∫ ·

0
Γ(f, f)(Xs)ds ∈M0,loc.

Proof. A calculation gives Γ(f, f)(x) = ∇f(x)>a(x)∇f(x) +
∫
Rd(f(x+ ξ)− f(x))2ν(x, dξ),

which is nonnegative for all x ∈ E. Next, for simplicity we suppose that f(X0) = 0, so

that

Mf
t = f(Xt)−

∫ t

0
Gf(Xs)ds and Mf2

t = f(Xt)
2 −

∫ t

0
G(f2)(Xs)ds. (3.12)

The general case is similar (−→ exercise). We will also use the identities(∫ t

0
Hsds

)2

= 2

∫ t

0
Hs

∫ s

0
Hrdr ds (3.13)

and

Mf
t

∫ t

0
Hsds =

∫ t

0
Mf
sHsds+

∫ t

0

∫ s

0
Hrdr dM

f
s , (3.14)

valid for any adapted process H with integrable trajectories. We get

(Mf
t )2 = f(Xt)

2 +

(∫ t

0
Gf(Xs)ds

)2

− 2f(Xt)

∫ t

0
Gf(Xs)ds

= f(Xt)
2 −

(∫ t

0
Gf(Xs)ds

)2

− 2Mf
t

∫ t

0
Gf(Xs)ds by (3.12)

= f(Xt)
2 − 2

∫ t

0
Gf(Xs)

(∫ s

0
Gf(Xr)dr +Mf

s

)
ds+ (loc. mg.) by (3.13)–(3.14)

=

∫ t

0

(
G(f2)(Xs)− 2f(Xs)Gf(Xs)

)
ds+ (loc. mg.) by (3.12)

In view of the definition of Γ(f, f), this proves the lemma.

Remark 3.19. Define Γ(f, g) = G(fg)−fGg− gGf . Then [Mf ,Mg]−
∫ ·

0 Γ(f, g)(Xs)ds is

in M0,loc (−→ exercise). The bilinear operator Γ is called the carré-du-champ (or square-

field) operator of G.

The next lemma uses the generalized conditional expectation. In particular, it is not

assumed that E[|X0|] <∞.
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Lemma 3.20. For any k ∈ N there exists a constant C ∈ R+ such that

E[1 + |Xt|2k | F0] ≤ (1 + |X0|2k) eCt, t ≥ 0.

Proof. Set f(x) = 1 + |x|2k. Then Gf ∈ Pol2k(E), so there exists a constant C ∈ R+ such

that |Gf(x)| ≤ Cf(x) for all x ∈ E. Let (τm) be a localizing sequence for Mf such that

|Xt| ≤ m for all t < τm (note the strict inequality!). Then

E[f(Xt∧τm) | F0] = f(X0) + E
[∫ t∧τm

0
Gf(Xs)ds | F0

]
≤ f(X0) + C

∫ t

0
E
[
f(Xs)1{s<τm} | F0

]
ds

≤ f(X0) + C

∫ t

0
E [f(Xs∧τm) | F0] ds.

By Gronwall’s lemma, E[f(Xt∧τm) | F0] ≤ f(X0)eCt.4 Sending m to infinity and using

Fatou’s lemma,

E[f(Xt) | F0] ≤ lim inf
m→∞

E[f(Xt∧τm) | F0] ≤ f(X0)eCt,

as desired.

Proposition 3.21. For any c ∈ R+ and f ∈ Pol(E), the process Nt = Mf
t 1{|X0|≤c}, t ≥ 0,

is a true martingale.

Proof. Since Mf ∈ M0,loc by Lemma 3.16 and X0 is F0-measurable, N ∈ M0,loc as well.

Moreover, since (Mf )2 −
∫ ·

0 Γ(f, f)(Xt)dt ∈M0,loc by Lemma 3.18, we have

N2 −
∫ ·

0
Γ(f, f)(Xt)1{|X0|≤c}dt ∈M0,loc.

Thus, by Lemma 3.17,

E[sup
t≤T

N2
t ] ≤ 4

∫ T

0
E[Γ(f, f)(Xt)1{|X0|≤c}]dt.

4We use the following form of Gronwall’s lemma: let g : R+ → R be continuous and let κ1, κ2 ∈ R+. If

g(t) ≤ κ1 + κ2

∫ t
0
g(s)ds for all t ≥ 0, then g(t) ≤ κ1e

κ2t for all t ≥ 0.
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Since G is polynomial on E, Γ(f, f)(x) ≤ λ(1 + |x|2k) for some λ ∈ R+, k ∈ N, and all

x ∈ E. Thus, by Lemma 3.20, there is a constant C ∈ R+ such that

E[sup
t≤T

N2
t ] ≤ 4λ

∫ T

0
E[(1 + |X0|2k)1{|X0|≤c}]e

Ctdt ≤ 4λ(1 + c2k)TeCT <∞.

This implies that N is a true martingale (−→ exercise).

Proof of Theorem 3.12. Fix c, t ∈ R+ and define the row vector valued Ft-measurable

function F (T ) = E[(1, H(XT ))1{|X0|≤c} | Ft], T ≥ 0. Proposition 3.21 implies that the

process M given by

MT = (1, H(XT ))1{|X0|≤c}− (1, H(X0))1{|X0|≤c}−
∫ T

0
G(1, H)(Xs)1{|X0|≤c}ds, T ≥ 0,

is an (1 +N)-dimensional row vector valued martingale. Therefore, using also the identity

G(1, H)(x) = (1, H(x))G for x ∈ E, we get for all T ≥ t,

0 = E[MT −Mt | Ft]

= F (T )− F (t)− E
[∫ T

t
G(1, H)(Xs)1{|X0|≤c}ds

∣∣∣ Ft]
= F (T )− F (t)−

∫ T

t
E
[
(1, H)(Xs)1{|X0|≤c} | Ft

]
Gds

= F (T )− F (t)−
∫ T

t
F (s)Gds.

This linear (1 +N)-dimensional ODE has the unique solution

F (T ) = F (t)e(T−t)G, T ≥ t.

Post-multiplying by ~p gives

E[p(XT ) | Ft]1{|X0|≤c} = (1, H(XT ))e(T−t)G~p1{|X0|≤c},

from which the result follows on sending c to infinity.

3.3 AJDs: Definition and characterization

We now turn to affine jump-diffusions (AJDs). Recall that we have fixed a state space

E ⊆ Rd and an E-valued jump-diffusion X with coefficients (b, a, ν) and generator G given

by (2.5).
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Definition 3.22. The operator G is called affine on E if there exist functions R0, . . . , Rd

from iRd to C such that

Geu
>x =

(
R0(u) +

d∑
i=1

Ri(u)xi

)
eu
>x (3.15)

holds for all x ∈ E and u ∈ iRd. In this case, we call X an affine jump-diffusion on E.

The following result is analogous to Proposition 3.6.

Proposition 3.23. The following are equivalent:

(i) G is affine on E;

(ii) The coefficients (b, a, ν) are affine of the form

b(x) = b0 + x1b1 + · · ·+ xdbd, (3.16)

a(x) = a0 + x1a1 + · · ·+ xdad, (3.17)

ν(x, · ) = ν0 + x1ν1 + · · ·+ xdνd (3.18)

for all x ∈ E, for some matrices ai ∈ Sd, vectors bi ∈ Rd, and signed measures νi on

Rd such that νi({0}) = 0 and
∫
Rd |ξ| ∧ |ξ|

2 |νi|(dξ) <∞, i = 0, . . . , d.

In this case, the functions R0, . . . , Rd in (3.15) can be taken to be given by

Ri(u) = b>i u+
1

2
u>aiu+

∫
Rd

(
eu
>ξ − 1− u>ξ

)
νi(dξ). (3.19)

Proof. We first assume that 0 ∈ E and the affine span of E is all of Rd.5

We first prove (i)⇒ (ii) and assume G is affine on E. Observe that

Geu
>x =

(
b(x)>u+

1

2
u>a(x)u+

∫
Rd

(
eu
>ξ − 1− u>ξ

)
ν(x, dξ)

)
eu
>x

so that, by virtue of the assumed relation (3.15), we obtain

R0(u) +
d∑
i=1

Ri(u)xi = b(x)>u+
1

2
u>a(x)u

+

∫
Rd

(
eu
>ξ − 1− u>ξ

)
ν(x, dξ) for all x ∈ E, u ∈ iRd.

(3.20)

5The affine span of a set V ⊆ Rd is the set of points λ1x
1 + · · · + λdx

d with λ1 + · · · + λd = 1 and

x1, . . . , xd ∈ V .



3.3. AJDS: DEFINITION AND CHARACTERIZATION 37

We claim that Ri is of the form (3.19) for all i. Since 0 ∈ E, this clear for R0(u), setting

a0 = a(0), b0 = b(0), ν0(dξ) = ν(0, dξ). Next, since the affine span of E is all of Rd,
there exist numbers λ1, . . . , λd with

∑d
k=1 λk = 1 and points x1, . . . , xd ∈ E such that

λ1x
1 + · · ·+ λdx

d = e1, the first canonical unit vector. Evaluating both sides of (3.20) at

x = xk, multiplying by λk, summing over k, and using the form of R0(u), it follows that

R1(u) is of the form (3.19) with

a1 =

d∑
k=1

λka(xk)− a0, b1 =

d∑
k=1

λkb(x
k)− b0, ν1(dξ) =

d∑
k=1

λkν(xk, dξ)− ν0(dξ).

The same argument shows that R2, . . . , Rd are also of the form (3.19).

We must still prove (3.16)–(3.18). Given the Ri just obtained, it is clear that taking

(b, a, ν) as in (3.16)–(3.18) is consistent with (3.20). Furthermore, for each fixed x ∈ E,

knowing the right-hand side of (3.20) for all u ∈ iRd uniquely determines a(x), b(x),

ν(x, dξ); see Jacod and Shiryaev (2003, Lemma II.2.44). Thus (3.16)–(3.18) is in fact the

only possibility. This completes the proof of (i)⇒ (ii).

To prove (ii) ⇒ (i), assume (b, a, ν) are given by (3.16)–(3.18). A calculation then

shows that G satisfies (3.15) with the Ri given by (3.19). Thus G is affine on E, as claimed.

Finally, in the general case, where either 0 /∈ E or the affine span of E is not Rd,
we apply an invertible affine transformation T : Rd → Rd such that 0 ∈ T (E) and the

affine span of T (E) is Rd′ × {0} for some d′ ≤ d. In these new coordinates we set the

corresponding ai, bi, and νi(dξ) to zero for i > d′, and then transform back by T−1.

Corollary 3.24. If X is an affine jump-diffusion on E and G is well-defined on Pol(E),

then X is a polynomial jump-diffusion on E.

Proof. This follows directly from Proposition 3.6 and Proposition 3.23.

Example 3.25. The CIR process X with values in E = R+ is given by

dXt = (b+ βXt)dt+ σ
√
XtdWt

for some parameters b ≥ 0, β ∈ R, σ ≥ 0. Often the drift part is written κ(θ−Xt) instead

of b+βXt where b = κθ and κ = −β (for b 6= 0 this is only possible if β 6= 0). This process

is affine on E, and in the notation of Proposition 3.23 we have

b0 = b, b1 = β, a0 = 0, a1 = σ2, ν = 0.
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In mathematical finance, the CIR process is used as a model for the short-term interest

rate; this model was introduced by Cox et al. (1985) and is known as the CIR short rate

model. The CIR process is also used as a component of the Heston stochastic volatility

model, introduced by Heston (1993). This model consists of the two-dimensional process

X = (Y, V ) with values in E = R× R+ given by

dYt = −1

2
Vtdt+

√
VtdBt

dVt = (b+ βVt)dt+ σ
√
VtdB̃t,

where (B, B̃) is a correlated two-dimensional Brownian motion with correlation ρ ∈ [0, 1].6

The process X is affine on E (−→ exercise). In finance, Yt represents the logarithm of the

time t price of an asset, and Vt represents its squared volatility. The Heston model is one

of the earliest and most popular stochastic volatility models.

3.4 The affine transform formula

Affine jump-diffusions on E not only satisfy the moment formula in Theorem (3.12), subject

to the generator being well-defined on Pol(E). Their characteristic functions are also

analytically tractable.

Theorem 3.26. Assume X is an affine jump-diffusion on E. For u ∈ iRd and T > 0 let

φ : [0, T ] → C and ψ = (ψ1, . . . , ψd) : [0, T ] → Cd be functions that solve the generalized

Riccati equations

φ′(τ) = R0(ψ(τ)), φ(0) = 0,

ψ′i(τ) = Ri(ψ(τ)), ψi(0) = ui, i = 0, . . . , d,
(3.21)

for τ ∈ [0, T ], where Ri(u) are the functions in (3.19). If

Reφ(τ) + Reψ(τ)>x ≤ 0 for all (τ, x) ∈ [0, T ]× E, (3.22)

then the affine transform formula holds,

E[eu
>XT | Ft] = eψ0(T−t)+ψ(T−t)>Xt , t ≤ T.

6This means that B and B̃ are scalar Brownian motions with 〈B, B̃〉t ≡ ρt. One can then find a bivariate

standard Brownian motion W = (W 1,W 2) such that B = W 1 and B̃ = ρW 1 +
√

1− ρ2W 2 (−→ exercise).
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Proof. Define F (t, x) = exp(φ(T−t)+ψ(T−t)>x) and consider the complex-valued process

M = (Mt)t∈[0,T ] given by Mt = F (t,Xt). A calculation using (3.21) yields

∂tF (t, x) + GF (t, x) = 0, 0 ≤ t ≤ T, x ∈ E,

where G acts on the real and imaginary parts of F (t, · ) separately. Therefore, since the

process Yt := (t,Xt) is a jump-diffusion with generator ∂t + G, we may apply Lemma 2.44

(with X replaced by Y and f(x) replaced by F (t, x)) to see that M is a local martingale.

Note that the condition (2.7) needs to be verified, which can be done as follows. Let

c := 1/maxτ∈[0,T ] |ψ(τ)|, where we suppose the denominator is non-zero (otherwise the

situation is rather trivial −→ exercise). Whenever |ξ| ≤ c, we have |ψ(T − t)>ξ| ≤ 1, and

thus the general inequality

|ez − 1− z| ≤ 3

2
|z|2 for all z ∈ C with |z| ≤ 1

implies

|F (t, x+ ξ)− F (t, x)− ξ>∇xF (t, x)| = |F (t, x)| |eψ(T−t)>ξ − 1− ξ>ψ(T − t)|

≤ |F (t, x)| 3
2
|ψ(T − t)>ξ|2

≤ 3

2
(|ξ|/c)2

for all (t, x) ∈ [0, T ] × E, where in the last step we also used that (3.22) implies that

|F (t, x)| ≤ 1 for all (t, x) ∈ [0, T ]× E. On the other hand, whenever |ξ| > c, we have

|F (t, x+ ξ)− F (t, x)− ξ>∇xF (t, x)| ≤ |F (t, x+ ξ)|+ |F (t, x)|+ |F (t, x)| |ψ(T − t)| |ξ|

≤ 1 + 1 + 1× |ξ|/c

≤ 3|ξ|/c.

Combining these bounds gives

|F (t, x+ ξ)− F (t, x)− ξ>∇xF (t, x)| ≤
(

3

2c2
∨ 3

c

)
|ξ| ∧ |ξ|2,

which in view of (3.18) implies that (2.7) holds for the process Y and the function F . This

justifies the above application of Lemma 2.44, showing that M is a local martingale. Since

|Mt| ≤ 1 due to (3.22), M is in fact a true martingale. Moreover, MT = exp(u>XT ). The

affine transform formula is therefore just the equality Mt = E[MT | Ft].
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Remark 3.27. Compared to the moment formula, the proof of the affine transform for-

mula looks rather short and simple. This is deceptive, because several questions are left

unanswered by Theorem 3.26: (i) nothing is said about existence and uniqueness of solu-

tions of the generalized Riccati equations (3.21); (ii) even if existence and uniqueness is

established abstractly, one still has to verify (3.22) which can be difficult if the solution is

not explicitly given; and (iii) it is often of interest to obtain the affine transform formula

for u with non-zero real part. The martingale property of M then becomes more difficult

to verify.

Exercise 3.28. Consider again the CIR process X with values in E = R+ given by

dXt = (b+ βXt)dt+ σ
√
XtdWt.

• Verify that the Riccati equations (3.21) become

φ′ = bψ, φ(0) = 0,

ψ′ = βψ +
σ2

2
ψ2, ψ(0) = u.

Show that the solution is given by

φ(τ) = b

∫ τ

0
ψ(s)ds, ψ(τ) =

eβτ

u−1 − σ2

2 (eβτ − 1)/β

for any purely imaginary u 6= 0, provided β 6= 0. If u = 0 then clearly ψ ≡ 0. If

β = 0, then passing to limit β → 0 in the above expression suggests that ψ(τ) =

(u−1 − σ2

2 τ)−1. Verify that this indeed gives the correct solution.

• Show that Reψ(τ) ≤ 0 for all τ ≥ 0 if u is purely imaginary.

• What happens if u is not purely imaginary? Does the Riccati equations still have a

global solution?

Example 3.29. One typically expects (and can often prove) that the Riccati equations

will have global solutions whenever u is purely imaginary and the parameters bi, ai, νi are

such that the process X exists. However, there are exceptions. For example, consider the

two-point state space E = {0, 1} ⊆ R, and the process X that jumps from 1 to 0 with
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intensity λ and is absorbed once it reaches 0. This is probably the simplest example of a

non-trivial continuous time Markov chain. It is also a jump-diffusion with generator

Gf(x) = λx(f(x− 1)− f(x)),

whose coefficients are a(x) = 0, b(x) = λx, ν(x, dξ) = λxδ−1. Thus X is an affine jump-

diffusion with R0(u) = 0 and R1(u) = λ(e−u − 1). The associated generalized Riccati

equation is

ψ′(τ) = λ(e−ψ(τ) − 1). (3.23)

We claim that this equation does not have a global solution for the initial condition u = iπ.

We argue by contradiction and assume that ψ(τ) is a global solution of (3.23). Then

Ψ(τ) = eψ(τ) satisfies the linear equation

Ψ′(τ) = −λΨ(τ) + λ, Ψ(0) = −1,

whose unique solution is Ψ(τ) = 1 − 2e−λτ . This becomes zero for τ = λ−1 log 2, a

contradiction. The deeper reason behind this fact is that the characteristic function of XT

for u = iπ and T = λ−1 log 2 given X0 = 1 becomes zero, and hence cannot be written as

exponential as in the affine transform formula. Indeed, we have

E[euXT ] = P(XT = 0) + eu P(XT = 1) = 1− (1− eu)e−λT .
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Chapter 4

Existence and uniqueness of

jump-diffusions

In previous chapters we have studied properties of given jump-diffusions, without worrying

about questions of existence and uniqueness. Of course, in some cases, existence and

uniqueness are obtained by other means, such as for Brownian motion and the Ornstein–

Uhlenbeck process. In this chapter we outline a general method for obtaining existence

of jump-diffusions via simple analytical criteria. Uniqueness is a more difficult problem,

which we will only touch on briefly.

4.1 The existence theorem

Fix a closed state space E ⊆ Rd and a candidate generator G with coefficients (b, a, ν),

that is,

Gf(x) = b(x)>∇f(x) +
1

2
Tr(a(x)∇2f(x)) +

∫
Rd

(
f(x+ ξ)− f(x)− ξ>∇f(x)

)
ν(x, dξ)

43
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with a(x) ∈ Sd+, ν(x, {0}) = 0, ν(x, (E − x)c) = 0, and
∫
Rd |ξ|

2 ∧ |ξ|ν(x, dξ) < ∞ for all

x ∈ E. We assume that the coefficients are locally bounded1, and that

Gf is continuous on E and vanishes at infinity for any f ∈ C2
c (Rd), (4.1)

where C2
c (Rd) denotes the space of compactly supported C2 functions on Rd. For any given

law µ on E, the goal is to find an E-valued jump-diffusion X with X0 ∼ µ, coefficients

(b, a, ν), and generator G.

4.1. One important method in the diffusion case (ν = 0) is to try to obtain X as the

solution of an SDE,

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0,

where σ(x)σ(x)> = a(x) for all x ∈ E. The main tool for this is Itô’s theorem on existence

and uniqueness of solutions of SDEs. However:

• One needs b, σ Lipschitz on Rd (or at least locally Lipschitz on Rd). This is too

restrictive in practice; just consider the CIR process dXt = κ(θ−Xt)dt+ σ
√
XtdWt.

• It is not clear how to guarantee that X stays in E, unless E = Rd.

• Generalization to processes with jumps is not straightforward.

4.2. A different method, which is the one we will focus on below, is to proceed via the mar-

tingale problem. This method is very general and, importantly, easy to use. Throughout,

we fix E, G, (b, a, ν).

Definition 4.3. An E-valued càdlàg process X = (Xt)t≥0 defined on some filtered proba-

bility space (Ω,F , (F)t≥0,P) satisfying the usual conditions is called a solution of MP(E,G, µ)

(“the martingale problem for (E,G) with initial law µ”), where µ is a probability measure

on E, if P(X0 ∈ · ) = µ and

f(Xt)− f(X0)−
∫ t

0
Gf(Xs)ds, t ≥ 0,

1More precisely, we assume that the function

E → R, x 7→ |a(x)|+ |b(x)|+
∫
Rd

|ξ|2 ∧ |ξ|ν(x, dξ)

is locally bounded. By Proposition 3.6, this holds if G is polynomial on E.
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is a local martingale for every f ∈ C2
b (Rd).

Remark 4.4. Note that, when constructing a solution of a martingale problem, one is

free to choose the underlying filtered probability space at one’s convenience. In this sense,

solutions of martingale problems are similar to weak solutions of SDEs. For us, a solution

of a martingale problem is always a càdlàg process X. However, in many sources it is the

law of X that is referred to as the solution of the martingale problem.

Remark 4.5. Other classes of test functions than C2
b (Rd) are sometimes used.

Due to the following result, solving the martingale problem is enough to get existence

of jump-diffusions.

Lemma 4.6. Let X be a solution of MP(E,G, µ). Then X is a jump-diffusion with coef-

ficients (b, a, ν) and generator G.

Proof. Define Bt =
∫ t

0 b(Xs)ds, Ct =
∫ t

0 a(Xs)ds, and µp(dt, dξ) = ν(Xt−, dξ)dt for t ≥ 0.

By Theorem 2.37, X is a special semimartingale with characteristics (B,C, µp). Thus, by

the definition of jump-diffusion and generator (see Definitions 2.39 and 2.43), the result

follows.

We cannot expect to get existence of solutions of MP(E,G, µ) without any further

conditions. For instance, if E = R+ and Gf(x) = 1
2f
′′(x), no solution will exist. This is

because any solution must be a Brownian motion, and will therefore not remain in R+.

The following lemma gives an important necessary condition for existence.

Lemma 4.7. Fix x ∈ E and let X be a solution of MP(E,G, δx). If f ∈ C2
b (Rd) and x

maximizes f over E, i.e. f(x) = maxy∈E f(y), then Gf(x) ≤ 0.

Proof. Assume for contradiction that f(x) = maxy∈E f(y) and Gf(x) > 0 for some f ∈
C2
b (Rd). Define

τ := inf{t ≥ 0 : Gf(Xt) ≤ 0}

and note that this is a strictly positive stopping time. The assumptions on G and the

maximality of f(x) then yields

f(Xt∧τ )− f(x)−
∫ t∧τ

0
Gf(Xs)ds < 0 ∀t ≥ 0.
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But since X solves MP(E,G, δx), this is also a local martingale starting from 0. Since any

nonpositive local martingale starting from zero is constant, we obtain a contradiction.

This motivates the following definition.

Definition 4.8. G satisfies PMP(E) (“the positive maximum principle on E”) if the fol-

lowing property holds:

x ∈ E, f ∈ C2
b (Rd), f(x) = max

y∈E
f(y) ≥ 0 =⇒ Gf(x) ≤ 0.

Due to Lemma 4.7, if there exists a solution of MP(E,G, δx) for every x ∈ E, then G
satisfies PMP(E). It is a remarkable fact that the converse statement is true as well, up

to one further condition.

Theorem 4.9. Assume

(i) G satisfies PMP(E),

(ii) there exist functions fn ∈ C2
c (Rd) with supy∈E(|fn(y)| + |Gfn(y)|) < ∞ as well as

fn(x)→ 1 and Gfn(x)→ 0 for all x ∈ E.

Then MP(E,G, µ) has a solution for every probability measure µ on E.

Remark 4.10. • If E is compact, then (ii) automatically holds: just take fn = 1 on a

neighborhood of E.

• If ν = 0 (no jumps) and b and a satisfy the growth condition |b(x)| + |a(x)|1/2 ≤
c(1 + |x|) for all x ∈ E and some constant c, then (ii) holds (−→ exercise). In

particular, this holds for polynomial diffusions.

• Exercise. Find a similar condition (involving ν as well as b and a) that works for

polynomial jump-diffusions.

• If G satisfies PMP(E), then Gf = Gg whenever f(x) = g(x) for all x ∈ E: just note

that f − g has a minimum and a maximum over E in each x ∈ E. This in particular

means that Gf is independent of the behavior of f outside E. It also means that G
is well-defined on Pol(E), provided (3.1) holds.
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We outline the proof of this theorem in the case where E is compact. The idea is to

approximate (in a suitable sense) the operator G by a sequence of simpler operators G(n)

for which the martingale problem is easy to solve. The solutions X(n) are then shown

to converge (in a suitable sense, at least along a subsequence) to a process X that solves

MP(E,G, µ). The positive maximum principle plays a central role for the construction of

the sequence of operators G(n) (see the proof of Lemma 4.12).

Notation: ‖f‖E = supx∈E |f(x)| denotes the supremum norm.

Lemma 4.11. Assume E is compact and fix a law µ on E. Let G(n) : C2
b (Rd)→ C(E) be

linear operators such that ‖G(n)f−Gf‖E → 0 for every f ∈ C2
b (Rd). Let X(n) be a solution

of MP(E,G(n), µ), let X be an E-valued càdlàg process, and assume that X(n) converges to

X in the sense of FDMDs, i.e.,

(X
(n)
t1
, . . . , X

(n)
tm )⇒ (Xt1 , . . . , Xtm) for all m ∈ N, 0 ≤ t1 < · · · < tm.

Then X is a solution of MP(E,G, µ), if we take (Ft)t≥0 to be the right-continuous comple-

tion of (F0
t )t≥0, where F0

t = σ(Xs : s ≤ t).

Proof. First consider the processes

Nf
t := f(Xt)− f(X0)−

∫ t

0
Gf(Xs)ds, f ∈ C2

b (Rd),

Nf,n
t := f(X

(n)
t )− f(X

(n)
0 )−

∫ t

0
G(n)f(X(n)

s )ds, f ∈ C2
b (Rd),

and note that since X(n) solves MP(E,G(n), µ), the processes Nf,n are local martingales.

More precisely, since f and G(n)f are continuous and X(n) take values in E which is

compact, Nf,n are bounded local martingales and thus true martingales. Fix then hi ∈
C2
b (Rd) for i = 1, . . . , k and 0 ≤ t1 ≤ . . . ≤ tk ≤ s < t. Setting F0,n

t := σ(X
(n)
s : s ≤ t) and

noting that X
(n)
t1
, . . . , X

(n)
tk

are F0,n
s -measurable we then get

0 = E
[
E[Nf,n

t −Nf,n
s |F0,n

s ]
k∏
i=1

hi(X
(n)
ti

)
]

= E
[(
Nf,n
t −Nf,n

s

) k∏
i=1

hi(X
(n)
ti

)
]
. (4.2)

Fix ε > 0 and note that for n large enough we have that ‖G(n)f − Gf‖E < ε. Thus (4.2)
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can be bounded from above by

E
[
f(X

(n)
t )

k∏
i=1

hi(X
(n)
ti

)
]
− E

[
f(X(n)

s )

k∏
i=1

hi(X
(n)
ti

)
]

−
∫ t

s
E
[
Gf(X(n)

u )
k∏
i=1

hi(X
(n)
ti

)
]
du+ εC,

where C = E
[∏k

i=1 hi(X
(n)
ti

)
]
(t − s). Letting n go to infinity, the dominated convergence

theorem yields

0 ≤ E
[
f(Xt)

k∏
i=1

hi(Xti)
]
− E

[
f(Xs)

k∏
i=1

hi(Xti)
]
−
∫ t

s
E
[
Gf(Xu)

k∏
i=1

hi(Xti)
]
du+ εC.

Since ε was arbitrary, we conclude that 0 ≤ E[(Nf
t −N

f
s )
∏k
i=1 hi(Xti)]. By a similar argu-

ment, we also get the converse inequality. The monotone class theorem and the definition

of conditional expectation then yield E
[
Nf
t −N

f
s |Fs] = 0, proving that Nf is a martingale.

We deduce that X is a solution of MP(E,G, µ).

Lemma 4.12. Assume that E is compact and G satisfies PMP(E). Then there exist kernels

κ(n) on Rd such that

• κ(n)(x,Ec) = 0 and κ(n)(x,E) = 1 for all x ∈ E and n ∈ N.

• The operators G(n) defined by

G(n)f(x) := n

∫
Rd

(f(y)− f(x))κ(n)(x, dy), f ∈ C2
b (Rd) (4.3)

satisfy ‖G(n)f − Gf‖E → 0 for every f ∈ C2
b (Rd).

Proof. Observe that PMP(E) implies that the operator G is dissipative, i.e.

‖λf − Gf‖E ≥ λ‖f‖E ∀λ > 0, f ∈ C2
b (Rd). (4.4)

Indeed, choosing x ∈ E such that f(x) = ‖f‖E (without loss of generality f(x) ≥ 0,

otherwise consider −f), by PMP(E) we have Gf(x) ≤ 0 and hence

‖λf − Gf‖E ≥ λf(x)− Gf(x) ≥ λf(x) = λ‖f‖E .
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The dissipativity (4.4) of G is the key property for the construction of the kernels κ(n).

Fix x ∈ E and n ∈ N and consider the operator Axn : (R(n−G)|E , ‖ · ‖E)→ R given by

Axnf = n(n− G)−1f(x),

where n − G denotes the linear operator mapping g to ng − Gg, R(n − G)|E denotes the

restriction to E of its range, i.e.

R(n− G)|E = {f |E : f = ng − Gg, g ∈ C2
b (Rd)},

and (n − G)−1 its inverse. This in particular means that Axnf = g for some g such that
ng−Gg
n = f on E. Observe then that

(i) Axn is well defined: suppose that ng1−Gg1
n = ng2−Gg2

n = f on E, then

0 =
1

n
‖(n− G)(g2 − g1)‖E

(4.4)

≥ ‖g2 − g1‖E .

This implies that g2 = g1 on E and thus that Axnf = g1(x) is well defined.

(ii) Axn is linear (−→ exercise).

(iii) Axn1 = 1 (−→ exercise).

(iv) Axn is a bounded functional of norm 1, i.e. |Axnf | ≤ ‖f‖E :

‖f‖E =
1

n
‖(n−G)

(
n(n−G)−1f

)
‖E

(4.4)

≥ ‖n(n−G)−1f‖E ≥ |n(n−G)−1f(x)| = |Axnf |.

(v) Axn is a positive functional, i.e. Axnf ≥ 0 whenever f ≥ 0 on E: by (iii), (iv), and the

nonnegativity of f on E we can compute

‖f‖E −Axnf = Axn(‖f‖E − f) ≤
∥∥‖f‖E − f∥∥E = ‖f‖E .

Since Axn is a bounded linear operator, by the Hahn-Banach extension theorem it can be

extended to a functional on C(E) still satisfying (ii)-(iv). As before, we can also show

for this extension that (iii) and (iv) imply (v). Due to (ii) and (v), the Riesz–Markov

representation theorem is applicable, and we obtain that

Axnf =

∫
E
f(y)κ(n)(x, dy), f ∈ R(n− G)|E
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for some (well chosen) measure κ(n)(x, · ) on E. By (iii), we also know that κ(n)(x,E) = 1.

For all f ∈ C2
b (Rd) define now Axnf =

∫
E f(y)κ(n)(x, dy). In order to show that the

linear operator G(n) given by (4.3) satisfies the last item of the lemma, observe that since

Axn
(
n−G
n f

)
= n(n− G)−1

(
n−G
n f

)
(x) = f(x) for all f ∈ C2

b (Rd) we get

Axnf = Axnf −
1

n
Axn(Gf) +

1

n
Axn(Gf) = f(x) +

1

n
Axn(Gf) (4.5)

and hence G(n)f(x) = n
∫
f(y) − f(x)κ(n)(x, dy) = n(Axnf − f(x)) = Axn(Gf). Since by

(4.5) and (iv) we also know that supx∈E |Axnf − f(x)| converges to 0 for n going to infinity,

we can conclude that

‖G(n)f − Gf‖E = sup
x∈E
|Axn(Gf)− Gf(x)|E → 0.

as n→∞. This completes the proof of the lemma.

Lemma 4.13. Assume that E is compact, fix n ∈ N, and let G(n) be the operator (4.3)

given by Lemma 4.12. Then there exists a solution of MP(E,G(n), µ) for any law µ on E.

Proof. Fix a probability space (Ω,F ,P) and let N be a poisson process with intensity n.

Let (Yk)k∈N0 be the Markov chain given by P(Y0 ∈ A) = µ(A) and

P(Yk+1 ∈ A|Y0, . . . , Yk) = κ(n)(Yk, A),

for all A ∈ B(E). Define a process X by Xt := Y0 +
∑Nt

n=1 Yn−Yn−1, t ≥ 0. Then X along

with (the right-continuous completion of) the filtration it generates solves MP(E,G(n), µ)

(−→ exercise).

Sketch of proof of Theorem 4.9. We only consider the case where E is compact. Fix a law

µ on E. By Lemma 4.12 we obtain operators G(n) that approximate G, and by Lemma 4.13

we obtain solutions X(n) of MP(E,G(n), µ). The main technical point is now to argue that

the sequence {X(n)}n∈N admits a limit point, in the sense that there exists a càdlàg process

X such that a subsequence {X(nk)}k∈N converges to X in the sense of FDMDs. This uses

the theory of weak convergence in the Polish space D([0,∞);E) of càdlàg trajectories

with values in E. We will not pursue this point here, though we do mention that it does

not rely on further use of the positive maximum principle. Once X has been obtained

and the convergence established, an application of Lemma 4.11 completes the proof of the

theorem.
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Remark 4.14. If E is not compact, then one performs essentially the same steps with

E replaced by its one-point compactification E∆ (and G extended in a suitable manner).

One then gets a solution X of MP(E∆,G, µ), which a priori may reach the cemetery state

∆ (“explode in finite time”). The role of condition (ii) is to prevent this from happening,

so that X remains in E and is a solution of MP(E,G, µ).

4.2 Applying the existence theorem to PJDs

Fix a closed state space E ⊆ Rd and the candidate generator G given by

Gf(x) = b(x)>∇f(x) +
1

2
Tr(a(x)∇2f(x)) +

∫
Rd

(
f(x+ ξ)− f(x)− ξ>∇f(x)

)
ν(x, dξ)

with a(x) ∈ Sd+, ν(x, {0}) = 0, ν(x, (E − x)c) = 0, and
∫
Rd |ξ|

2 ∧ |ξ|ν(x, dξ) < ∞ for all

x ∈ E. From the previous section we know that if G satisfies (4.1) and the conditions of

Theorem 4.9, then MP(E,G, µ) has a solution for every probability measure µ on E. Since

we are interested in PJDs, we assume that Proposition 3.6(ii) is satisfied. In this case,

(4.1) automatically holds whenever ν = 0 or E is compact. Moreover, Remark 4.10 shows

that Theorem 4.9(ii) holds. We thus only need to check PMP(E). We illustrate now by

means of some examples how PMP(E) can be verified.

Example 4.15 (E = R). Fix g ∈ C2
b (R) such that g(x) = maxR g ≥ 0 for some x ∈ R.

Then one has the first- and second-order optimality conditions

g′(x) = 0 and g′′(x) ≤ 0. (4.6)

This directly implies that the following operators satisfy PMP(R).

• Brownian motion: Set Gf(x) = 1
2f
′′(x). Then (4.6) yields Gg(x) ≤ 0.

• Geometric Brownian motion: Gf(x) = βxf ′(x) + A
2 x

2f ′′(x) with β ∈ R and A ≥ 0.

Then (4.6) yields Gg(x) = A
2 x

2g′′(x) ≤ 0.

• PJD with bounded jumps:

Gf(x) = (b+ βx)f ′(x) +
a+ αx+Ax2

2
f ′′(x) +

∫
R

(
f(x+ y)− f(x)− yf ′(x)

)
µ(dy),
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for b, β ∈ R, a, α,A ∈ R such that a + αx + Ax2 ≥ 0 for all x ∈ R, and µ being a

probability measure supported on [−C,C] \ {0} for some C > 0. Then (4.6) yields

Gg(x) ≤
∫
R g(x+ y)− g(x))µ(dy), which is non-positive since g(x) = maxR g.

Since those operators also satisfy (4.1) (−→ exercise), by Theorem 4.9 the corresponding

martingale problems have an R+-valued solution for every initial condition.

Example 4.16 (E = R+). Fix g ∈ C2
b (R) such that g(x) = maxR+ g ≥ 0 for some x ∈ R+.

Then one has the first- and second-order optimality conditions, which are special cases of

the so-called Karush–Kuhn–Tucker conditions:

If x > 0, then (4.6) holds. If x = 0, then g′(0) ≤ 0.

Indeed, the result for x > 0 is basic calculus, while for x = 0 one simply observes that

g′(0) = limy→0
g(y)−g(0)

y , which is nonnegative since g(0) = maxR+ g. This condition auto-

matically implies that the following operators satisfy PMP(R+).

• Geometric Brownian motion: Gf(x) = βxf ′(x) + A
2 x

2f ′′(x) with β ∈ R and A ≥ 0.

Note that in Example 4.15 we obtained existence of an R-valued solution of the

corresponding martingale problem. What we are proving now is existence of an

R+-valued solution.

• CIR process: Gf(x) = κ(θ − x)f ′(x) + σ2

2 xf
′′(x) with κ, θ, σ ∈ R such that κθ ≥ 0.

Since those operators also satisfy ν = 0 and thus condition (4.1), by Theorem 4.9 the

corresponding martingale problems have R+-valued solutions for every initial condition.

Remark 4.17. Example 4.16 show that, at the boundary of E, the drift needs to be

“inward-pointing” and the diffusion needs to vanish. This is the case for d = 1, but what

about d ≥ 2? For instance, what do the drift and diffusion coefficients look like for the

polynomial diffusion given by (W,W 2), where W a one-dimensional Brownian motion?

Example 4.18. (E = [0, 1].) Fix g ∈ C2
b (R) such that g(x) = max[0,1] g ≥ 0 for some

x ∈ [0, 1]. Then one has the first- and second-order optimality conditions (−→ exercise):

If x ∈ (0, 1), then (4.6) holds. If x = 0, then g′(0) ≤ 0, and if x = 1, then g′(1) ≥ 0.

This condition automatically implies that the following operators satisfy PMP([0, 1]).
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• Jacobi Diffusion: Gf(x) = κ(θ−x)f ′(x) + σ2

2 x(1−x)f ′′(x) with κ, θ, σ ∈ R such that

κθ ≥ 0, κ(θ−1) ≤ 0. For x ∈ (0, 1) Lemma ?? yields Gg(x) ≤ 0. For x = 0, 1 Lemma

?? yields Gg(0) = κθg′(0) ≤ 0 and Gg(1) = κ(θ − 1)g′(1) ≤ 0, respectively.

• Polynomial Jump Diffusion with negative jumps:

Gf(x) = κ(θ−x)f ′(x) +
σ2

2
x(1−x)f ′′(x) +

∫
[0,1]

(
f(x− xy)− f(x) + xyf ′(x)

)
µ(dy)

with κ, θ, σ ∈ R and µ being a probability measure on (0, 1] such that κθ ≥ 0 and

κ(θ − 1) +
∫
yµ(dy) ≥ 0. With this specification, if a jump occurs when the process

is at level x, then the size of the jump is −yx, where y is µ-distributed.

Since these operators also satisfy condition (4.1) (−→ exercise), by Theorem 4.9 the cor-

responding martingale problems have [0, 1]-valued solution for every initial condition.

Remark 4.19. Example 4.18 shows that if ν 6= 0, the intuition given in Remark 4.17 needs

to be adjusted: It is now the effective drift, namely b(x) adjusted by the jump compensation∫
−ξν(x, dξ), that needs to be inward-pointing at the boundary.

4.20. The approach illustrated in the examples above can be used for (much) more general

state spaces. Checking the positive maximum principle is always central, and this is done

by applying optimality conditions like the Karush–Kuhn–Tucker conditions.

4.3 Uniqueness of PJDs and AJDs

While the existence problem has a satisfactory solution for a very general class of jump-

diffusions, uniqueness (in law) is much more delicate. For PJDs and AJDs, it is sometimes

possible to obtain uniqueness by appealing to the moment formula and the affine transform

formula, respectively.

• Let X be a PJD on E ⊆ Rd with generator G. By iterating the moment formula, it

follows that all joint moments of all FDMDs, namely the quantities

E[Xα(1)

t1 · · ·Xα(m)

tm ], m ∈ N, 0 ≤ t1 < · · · < tm, α
(1), . . . ,α(m) ∈ Nd0,



54 CHAPTER 4. EXISTENCE AND UNIQUENESS OF JUMP-DIFFUSIONS

are uniquely determined by G and the law of X0. In some cases it can be shown that

this uniquely determines all FDMDs, which proves uniqueness in law of solutions of

the martingale problem. However, there are cases where the moments do not uniquely

determine the distribution. A famous such example is the lognormal distribution:

there exist distributions different from the lognormal, which nonetheless have the

same moments as the lognormal. In such cases, uniqueness in law must be proved by

other means. For example, this is the case with geometric Brownian motion, whose

one-dimensional marginal distributions are lognormal!

• Let X be an AJD on E ⊆ Rd with generator G. By iterating the affine transform

formula, and assuming that existence of solutions can be proved for all involved

Riccati equations, it follows that the characteristic functions of all FDMDs, namely

the quantities

E[exp(iλ(1)>Xt1 + · · ·+iλ(1)>Xt1)], m ∈ N, 0 ≤ t1 < · · · < tm, λ
(1), . . . ,λ(m) ∈ Rd,

are uniquely determined by G and the law of X0. This uniquely determines the

FDMDs themselves, and proves uniqueness in law of solutions of the martingale

problem.



Chapter 5

Applications in Finance

The goal of this chapter is to illustrate how polynomial and affine jump-diffusions can be

used to construct financial models. There is a large and growing literature where this is

done. In this course, we will focus on a few specific but important examples. Specifically,

we will consider affine and polynomial stochastic volatility models, as well as affine and

polynomial interest rate models.

Beyond stochastic volatility and interest rates, polynomial jump-diffusions have been

used to model exchange rates, life insurance liabilities, variance swaps, credit risk, dividend

futures, commodities and electricity, stochastic portfolio theory, among other things. For

references, see Filipović and Larsson (2017). Affine jump-diffusions have been studied

longer, and has rich history in the finance literature, where they have long been used

to address a large number of problems in asset pricing, optimal investment, equilibrium

analysis, etc.

5.1 Derivatives pricing via absence of arbitrage

In this section we briefly review the fundamental theorem of asset pricing, which provides

a convenient framework for constructing asset pricing models. Fix a filtered probabil-

ity space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions. Let X = (X1, . . . , Xd) be a

semimartingale that models the (discounted1) prices of d liquidly traded assets.

1That is, Xi
t = e−

∫ t
0 rsdsP it , where P it models the nominal price and rt models the short interest rate.

55
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Informal definition. X is arbitrage-free if it is impossible generate riskless profits by

trading in X using (Ft)-predictable strategies.

5.1. Of course, work is needed to make this definition mathematically rigorous. Slightly

different definitions may be appropriate depending on the circumstances, and one of the

achievements of mathematical finance has been to clarify the relations between different

possible definitions.

5.2. Absence of arbitrage is a desirable consistency property that a pricing model ought

to satisfy. Without it, the analysis may yield questionable outcomes. For example, if one

tries to numerically calculate optimal trading strategies in a model with arbitrage, these

trading strategies are likely to be nonsensical.

5.3. Given an arbitrage-free model, one can obtain prices of derivative securities (or at

least a range of possible prices) by the principle of arbitrage-free pricing. This principle

states that the price process of the derivative should be chosen so that the joint model

remains arbitrage-free. We illustrate this with an example.

Example 5.4. Suppose S = (St)t≥0 is an arbitrage-free model for the price of a stock.

Let us take rt = 0 for simplicity, so that S is already discounted. A European call option

written on the stock with maturity T and strike price K can be viewed as a security that

pays the amount CT := (ST −K)+ to the holder at time T . This payoff is stochastic and

unknown at times t < T , but still only depends on the behavior of the underlying, that is

the stock. We wish to identify the price Ct of the call option at times t < T . The principle

of arbitrage-free pricing states that C = (Ct)t∈[0,T ] should be selected to that the joint

model X = (S,C) is arbitrage-free. The key tool for doing so is the following theorem.

Fundamental theorem of asset pricing. Let X = (X1, . . . , Xd) model the (dis-

counted) prices of d liquidly traded assets. Then, up to technical conditions,

X is arbitrage-free ⇐⇒ ∃Q ∼ P such that X is a local Q-martingale.

The probability measure Q is called a risk-neutral measure or equivalent local martingale

measure.
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5.5. The validity of this theorem depends on the details of the definition of “arbitrage-

free” as well as the precise assumptions made on X. However, the sufficiency direction

“⇐” holds under any reasonable definition of “arbitrage-free”. This has two important

practical consequences:

(i) By directly specifying the (discounted) model price S = (St)t≥0 of an underlying asset

as a local martingale under a probability measure Q, we are guaranteed to obtain an

arbitrage-free model.

(ii) By then specifying the price of the derivative as Ct := EQ[CT | Ft], we are additionally

guaranteed to obtain an arbitrage-free joint model (S,C). One then often speak about

Q as the pricing measure.

(In the case of non-zero interest rate, we specify (e−
∫ t
0 rsdsSt)t≥0 to be a local martingale,

and price the derivative by Ct = EQ[e−
∫ T
t rsdsCT | Ft].)

This general procedure presents us with two competing objectives: on one hand, the

model S of the underlying has to be rich enough to capture empirically observed features;

on the other hand, S has to be simple enough that quantities like EQ[(ST −K)+ | Ft] can

be computed. Polynomial and affine jump-diffusions provide an excellent trade-off.

Example 5.6. The classical Black–Scholes stock price model is St = S0 exp(σWt − σ2

2 t)

under the risk-neutral measure Q assuming zero interest rates, where W is a standard

Brownian motion under Q and σ > 0 is a volatility parameter. The time-zero price of a

call option,

C0 = EQ[(ST −K)+] = EQ[(eσWt−σ
2

2
t −K)+],

can then be calculated explicitly.

5.2 Affine stochastic volatility models

5.7. Fix a filtered probability space (Ω,F , (Ft)t≥0,Q) satisfying the usual conditions, where

Q will play the role of risk-neutral measure. We will consider some affine stochastic volatil-

ity models, focusing on the diffusion case (no jumps). We take the interest rate to be zero,

rt ≡ 0.
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5.8. A generic stochastic volatility model has the following structure. The stock price is

modeled by a strictly positive process S = (St)t≥0 whose log-price Yt = logSt is given by

dYt = −1

2
σ2
t dt+ σtdBt,

where B is a standard Brownian motion, and (σt)t≥0 is a predictable process such that∫ t
0 σ

2
sds <∞ for all t ≥ 0 (in other words, (σt)t≥0 should be B-integrable). By Itô’s formula

(−→ exercise), S then satisfies

dSt = StσtdBt,

so S is a local martingale. Thus the model is arbitrage-free.

5.9. We already saw the Heston (1993) model in Example 3.25. It consists of the two-

dimensional process (Y, V ) with values in E = R× R+ given by

dYt = −1

2
Vtdt+

√
VtdBt

dVt = (b+ βVt)dt+ σ
√
VtdB̃t,

where (B, B̃) is a correlated two-dimensional Brownian motion with correlation ρ ∈ [0, 1].

This is a stochastic volatility model in the sense of 5.8 with σt =
√
Vt. (Be careful with the

potentially confusing notation: here σt =
√
Vt stands for the volatility process as above,

but there is also a constant parameter σ ≥ 0 that enters in the dynamics of V .)

The Heston model can be extended with several factors. This means that the volatility

of the stock depends on more than one stochastic process. Here is a simple two-factor

extension of the Heston model, which preserves the affine structure.

dYt = −1

2
(V 1
t + V 2

t )dt+
√
V 1
t dB

1
t +

√
V 2
t dB

2
t , (5.1)

dV 1
t = (bV1 + βV11V

1
t + βV12V

2
t )dt+ σ1

√
V 1
t dB̃

1
t , (5.2)

dV 2
t = (bV2 + βV21V

1
t + βV22V

2
t )dt+ σ2

√
V 2
t dB̃

2
t , (5.3)

where B1, B2, B̃1, B̃2 are Brownian motions with 〈Bi, B̃i〉t = ρit (i = 1, 2), and all other

pairs uncorrelated.

Remark 5.10. Note that (5.1)–(5.3) indeed specify a stochastic volatility model in the

sense of 5.8, because we have

dYt = −1

2
σ2
t + σtdWt,
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where σt :=
√
V 1
t + V 2

t and W is defined by

dWt :=
1

σt
(
√
V 1
t dB

1
t +

√
V 2
t dB

2
t ).

Note that W is indeed a Brownian motion by Lévy’s characterization theorem (→ exercise).

Proposition 5.11. Suppose bVi ≥ 0 and βVij ≥ 0 for all i and j 6= i. Then for any starting

point in E := R× R2
+ the process X := (Y, V 1, V 2), is E-valued, and is affine on E.

Proof. Existence follows from Theorem 4.9 (→ exercise). To verify the affine property,

note that X is an E-valued diffusion with coefficients (b, a, 0), where

b(x) = b(y, v1, v2) =


0

bV1

bV2

+


0 −1

2 −1
2

0 βV11 βV12

0 βV21 βV22



y

v1

v2

 .

To compute a(x), consider the continuous local martingale part of X,

dM c
t = Σ(Xt)dBt,

where

Σ(x) = Σ(y, v1, v2) =


√
v1
√
v2 0 0

0 0 σ1
√
v1 0

0 0 0 σ2
√
v2

 , dBt =


dB1

t

dB2
t

dB̃1
t

dB̃2
t

 .

Letting as usual 〈M c,M c〉 be the matrix-valued process with components 〈M c,i,M c,j〉, and

similarly for 〈B,B〉, one verifies that

a(Xt)dt = d〈M c,M c〉t = Σ(Xt)d〈B,B〉tΣ(Xt)
> = Σ(Xt)


1 0 ρ1 0

∗ 1 0 ρ2

∗ ∗ 1 0

∗ ∗ ∗ 1

Σ(Xt)
>

=


V 1
t + V 2

t ρ1σ1V
1
t ρ2σ2V

2
t

∗ σ2
1V

1
t 0

∗ ∗ σ2
2V

2
t

 dt,

where “∗” is to be filled in by symmetry. Thus X is affine on E by Proposition 3.23.
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Remark 5.12. One can clearly consider generalizations to more than two volatility factors

and more than one stock. However, the affine requirement imposes restrictions on the

possible dynamics. For example, in the two-factor model (5.1)–(5.3), try to modify the

correlation structure of dBt without destroying the affine property.

5.13. Next, we consider a model that does not look affine at first glance, but turns out to

have an affine structure after augmenting the factor process. This augmentation technique

is sometimes very useful. The Stein and Stein (1991) stochastic volatility model is specified

by

dYt = −1

2
σ2
t dt+ σtdBt,

dσt = (bσ + βσσt)dt+ αdB̃t,

where bσ, βσ, and α are real parameters, and B and B̃ are correlated Brownian motions

with correlation parameter ρ. We see from Proposition 3.23 that the joint process (Y, σ)

is not affine, since for example the drift of Y is quadratic in σ. Nonetheless, we have the

following result:

Proposition 5.14. The process X = (Y, σ, σ2) is affine on E := R×{(u, v) ∈ R2 : v = u2}.

Proof. First observe that Itô’s formula gives

dσ2
t = 2σtdσt + d〈σ〉t = (α2 + 2bσσt + 2βσσ2

t )dt+ 2ασtdB̃t.

From this we infer that X is an E-valued diffusion whose coefficients (b, a, 0) satisfy

b(x) =


0

bσ

α2

+


0 0 −1

2

0 βσ 0

0 2bσ 2βσ



y

σ

σ2

 , a(x) =


σ2 ρασ 2ρασ2

∗ α2 2α2σ

∗ ∗ 4α2σ2

 .

Since both depend on (y, σ, σ2) in an affine way, we deduce that X is affine on E.

5.3 Option pricing in affine stochastic volatility models

We continue to work on a filtered probability space (Ω,F , (Ft)t≥0,Q) satisfying the usual

conditions, and consider an affine jump-diffusion X on E ⊆ Rd. In an affine stochastic
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volatility model such as those we have seen above, the log-price is a component of the

process X, say logSt = Yt := X1
t . To price European puts (and similarly for other

options), we need to compute

Ct := EQ[(K − ST )+ | Ft] = EQ[(K − eYT )+ | Ft].

However, the affine transform formula only allows us to compute quantities like EQ[eu
>XT |

Ft] in a tractable way. How can we leverage this tractability to price options? A key

method for doing so is Fourier pricing, which is based on the following identity from

Fourier analysis.

Lemma 5.15. Let K > 0 and w > 0. Then

(K − ey)+ =
1

2π

∫
R
e(iλ−w)y Kw+1−iλ

(iλ− w)(iλ− w − 1)
dλ

for all y ∈ R.

Proof. Observe that the function h(y) := ewy(K − ey)+ is in L1(R). Its Fourier transform

is thus well-defined and given by

ĥ(λ) :=

∫
R
e−iλyh(y)dy =

Kw+1−iλ

(iλ− w)(iλ− w − 1)
.

Through a computation (−→ exercise) one finds

|ĥ(λ)| = Kw+1

λ2 + w(w + 1)
,

which shows that ĥ ∈ L1(R). We may thus apply the inverse Fourier transform to obtain

h(y) =
1

2π

∫
R
eiλyĥ(y)dy.

This is the claimed identity.

Using Lemma 5.15 together with Fubini’s theorem, we are able to derive the following

formula for the put price in a model where the log-price is Yt := logSt:

EQ[(K − ST )+ | Ft] = EQ[(K − eYT )+ | Ft]

= EQ

[
1

2π

∫
R
e(iλ−w)YT

Kw+1−iλ

(iλ− w)(iλ− w − 1)
dλ | Ft

]
=

1

2π

∫
R
EQ[e(iλ−w)YT | Ft]

Kw+1−iλ

(iλ− w)(iλ− w − 1)
dλ.
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The application of Fubini’s theorem is valid provided that EQ[e−wYT | Ft] < ∞. This has

to be verified on a case by case basis, and typically only holds for sufficiently small values

of w. The formula that we obtain can now be used, since the conditional expectations

EQ[e(iλ−w)YT | Ft] are accessible via the affine transform formula.

5.4 The Jacobi stochastic volatility model

The following is an example of stochastic volatility model based on a polynomial dif-

fusion, introduced by Ackerer et al. (2016). We work on a filtered probability space

(Ω,F , (Ft)t≥0,Q) satisfying the usual conditions, on which a two-dimensional standar

Brownian motion W = (W 1,W 2) is defined. Fix two parameters 0 ≤ vmin < vmax < ∞,

and define

Q(v) :=
(v − vmin)(vmax − v)

(
√
vmax −

√
vmin)2

.

The squared volatility is specified as

dVt = κ(θ − Vt)dt+ σ
√
Q(Vt)dW

1
t , (5.4)

for some parameters κ ≥ 0, θ ∈ [vmin, vmax], σ > 0. The process V exists and is valued in

[vmin, vmax] due to Theorem 4.9 (−→ exercise). Next, the log-price is specified as

dYt = −1

2
Vtdt+ ρ

√
Q(Vt)dW

1
t +

√
Vt − ρ2Q(Vt)dW

2
t , (5.5)

where ρ ∈ [−1, 1]. Observe that Q(v) ≤ v, so that
√
Vt − ρ2Q(Vt) makes sense. Moreover,

d〈Y 〉t = Vtdt, so that Vt is the squared volatility and we indeed have a stochastic volatility

model in the sense of 5.8.

Exercise 5.16. Show that X := (Y, V ) is a polynomial diffusion on E := R× [vmin, vmax]

with coefficients (b, a, 0) given by

b(x) = b(y, v) =

(
−v/2
κ(θ − v)

)
, a(x) = a(y, v) =

(
v ρσQ(v)

x σ2Q(v)

)

5.5 Option pricing in polynomial stochastic volatility models

5.17. For stochastic volatility models based on polynomial jump-diffusions the Fourier

methodology used in the affine case is no longer appropriate. Rather than expressing
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option prices in terms of characteristics functions, we wish to express them in terms of

moments. We now describe a general method for doing so. We consider the problem of

computing expectations of the form

EQ[f(YT )],

where Y is a component of a polynomial jump-diffusion, and f : R → R is a function de-

termined by the option payoff. The running example we have in mind is to price European

call options in the Jacobi stochastic volatility model (5.4)–(5.5), in which case Y is the

log-price and f(y) = (ey −K)+.

5.18. We assume that YT has a density function gT . In the Jacobi model, a sufficient

condition for this is that
∫ T

0 (Vs − ρ2Q(Vs))ds > 0 a.s. We also fix an auxiliary density

function w on R such that ∫
R

gT (x)2

w(x)
dx <∞. (5.6)

We may then define the weighted Hilbert space

L2
w := {all measurable g : R→ R such that

∫
R
g(x)2w(x)dx <∞},

where as usual we identify functions that are w-a.e. equal. The inner product on this space

is

〈g, h〉w :=

∫
R
g(x)h(x)w(x)ds.

The basic assumption is now that the payoff function f satisfies

f ∈ L2
w.

Note that (5.6) expresses that the likelihood ratio function is in L2
w,

` :=
gT
w
∈ L2

w

The basic idea is now the following. If {hn}n≥0 is an orthonormal basis (ONB) for L2
w,

then, since both f and ` lie in L2
w, one has

EQ[f(YT )] =

∫
R
f(x)gT (x)dx = 〈f, `〉w =

∑
n≥0

〈f, hn〉w〈`, hn〉w. (5.7)

By suitably choosing the objects involved, it turns out that the moment formula can be

used to evaluate the right-hand side (of course, one has to truncate the infinite sum). Let

us look at how this works in the Jacobi model.
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5.19. We put ourselves in the setup of the Jacobi stochastic volatility model. Let w be the

Gaussian density function with parameters (µw, σw) with σw > vmaxT/2. One can then

show that (5.6) holds. Next, set

hn(x) :=
1√
n!
Hn
(
x− µn
σw

)
where Hn is the nth Hermite polynomial,

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2.

(This is a polynomial of degree n!) It is then known that {hn}n≥0 is an ONB for L2
w. We

now consider how to compute the right-hand side of (5.7).

• 〈f, hn〉w =
∫
R f(x)hn(x)w(x)dx is the expectation of fhn under a Normal(µw, σw) dis-

tribution, which can be computed efficiently. In fact, one can even obtain extremely

efficient recursive formulas.

• 〈`, hn〉w =
∫
R
gT (x)
w(x) hn(x)w(x)dx =

∫
R hn(x)gT (x)dx = EQ[hn(YT )] can be computed

efficiently using the moment formula, since YT is a component of a polynomial (jump-)

diffusion, and hn is a polynomial.

Further description of the general method can be found in Filipović and Larsson (2017),

and for details in the case of the Jacobi model, see Ackerer et al. (2016).

5.6 Overview of interest rate and fixed income models

5.20. A major application of polynomial and affine jump-diffusions is in the area of interest

rates and fixed income. The basic security is now the zero-coupon bond (ZCB). The holder

of a ZCB with maturity T is guaranteed a payoff of one currency unit (e.g. USD or CHF)

at time T . Thus the value of a ZCB at maturity is known in advance: it is equal to one.

The question is what its value is at times t < T . Letting P (t, T ) denote the (model) price,

the general arbitrage-free pricing framework thus postulates

P (t, T ) = EQ[e−
∫ T
t rsds × 1 | Ft], (5.8)

where Q is a pricing measure, and rt is the short rate. Note that P (T, T ) = 1, as it should.

Note also that, unlike the stock price models considered in previous sections, it is crucial
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to work with stochastic interest rates. If the interest rate is deterministic (let alone zero),

the pricing problem is trivial.

The collection {P (t, T ), T ≥ t} of ZCB prices at each time t is called the term structure

of bond prices. Consequently, models for ZCBs are often called term structure models.2

In these notes we focus on ZCBs. There are many other important fixed income in-

struments, such as forward rate agreements, caps, floors, coupon bonds, swaps, swaptions,

etc., but they are all in some way constructed from simple ZCBs.

5.21. There are several possible modeling approaches. The most important ones are:

• Short-rate models: One directly models the short rate rt in such a way that (5.8)

can be computed directly. Affine jump-diffusions form a natural basis for such models.

• Heath–Jarrow–Morton (HJM) models: Define the forward rates f(t, s) via the

equation P (t, T ) = e−
∫ T
t f(t,s)ds. The function s 7→ f(t, s), which is observed at time

t, is called the forward curve at time t. As t increases, the forward curve evolves

stochastically, and an HJM model seeks to describe this evolution.

• State price density models: Consider the real-world measure P and the pricing

measure Q ∼ P, and let Zt := dQ
dP |Ft be the corresponding Radon–Nikodym density

process. Bayes’ rule gives

P (t, T ) = EQ[e−
∫ T
t rsds | Ft] =

1

Zte
−

∫ t
0 rsds

EP[ZT e
−

∫ T
0 rsds | Ft] =

1

ζt
EP[ζT | Ft],

where we define ζt := Zte
−

∫ t
0 rsds to be the discounted density process. The process ζ

is called state price density (or pricing kernel or stochastic discount factor). In a state

price density model, one directly models the dynamics of ζ (under P!). Polynomial

jump-diffusions form a natural basis for such models.

• Market models: In reality, ZCBs exist only for finitely many maturities T ∈
{T1, . . . , Tm}. A market model (or sometimes LIBOR market model) specifies dy-

2The notion of a term structure is more general however. For instance, if C(t, T,K) denotes the price

at time t of a call option with maturity T and strike price K, one often refers to {C(t, T,K) : T ≥ t} as the

term structure of option prices.
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namics for the δ-period forward LIBOR rates defined by

L(t, Tk) :=
1

δ

(
P (t, Tk)

P (t, Tk + δ)
− 1

)
, t ≤ Tk, k = 1, . . . ,m,

for a given δ > 0.

The above approaches have all been studied rather extensively. In this course we will look

at short-rate models based on affine jump-diffusions (often called affine term structure

models), and state price density models based on polynomial jump-diffusions (often called

polynomial term structure models).

5.7 Affine short-rate models

Fix a filtered probability space (Ω,F , (Ft)t≥0,Q) satisfying the usual conditions. Let X be

an affine jump-diffusion on E ⊆ Rd with coefficients (b, a, ν) and generator G. Recall from

Proposition 3.23 that the coefficients are affine in x,

b(x) = b0 +

d∑
i=1

xibi, a(x) = a0 +

d∑
i=1

xiai, ν(x, · ) = ν0 +

d∑
i=1

xiνi.

An affine short rate model is now obtained by taking Q to be the pricing measure, and

define the short rate process by

rt := γ>Xt

for some γ ∈ Rd. For later use, we also introduce the integrated short rate process,

Rt :=

∫ t

0
rsds.

The following result shows how to calculate bond prices in an affine short-rate model.

Proposition 5.22. Assume (A,B) is a solution of the following system of ODEs:

A′(τ) = b>0 B −
1

2
B(τ)>a0B(τ)−

∫
Rd

(e−B(τ)>ξ − 1−B(τ)>ξ)ν0(dξ), A(0) = 0,

B′i(τ) = b>i B −
1

2
B(τ)>aiB(τ)−

∫
Rd

(e−B(τ)>ξ − 1−B(τ)>ξ)νi(dξ) + γi, Bi(0) = 0.

Then the bond prices are given by

P (t, T ) = e−A(T−t)−B(T−t)>Xt , t ≤ T,

provided the right-hand side is bounded by eRt for all t ≤ T .
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Proof. One can prove this result by repeating the argument leading to the affine transform

formula (Theorem 3.26). Alternatively, one can reduce the problem to a direct application

of that theorem, which is what we will do here. It constitutes another example of the

augmentation technique used in connection with the Stein and Stein model; see Proposi-

tion 5.14.

We now start the proof. Define the augmented process X̃ = (X,R). Note that dRt =

γ>Xtdt. It follows that X̃ is an AJD on E × R with coefficients (̃b, ã, ν̃) given as follows,

where we write x̃ = (x, xd+1) for the column vector representing a generic point in Rd+1.

b̃(x̃) =

(
b0

0

)
︸ ︷︷ ︸

=:̃b0

+
d∑
i=1

xi

(
bi

γi

)
︸ ︷︷ ︸

=:̃bi

+ xd+1 × 0︸︷︷︸
=:̃bd+1

and

ã(x̃) =

(
a0 0

0 0

)
︸ ︷︷ ︸

=:ã0

+

d∑
i=1

xi

(
ai 0

0 0

)
︸ ︷︷ ︸

=:ãi

+ xd+1 × 0︸︷︷︸
=:ãd+1

.

To derive the jump coefficient ν̃(x̃, dξ̃), observe first that R cannot jump. Thus X̃ has a

jump of size ξ̃ = (ξ, ξd+1) at a time t if and only if ξd+1 = 0 and X has a jump of size ξ at

the time t. From this we infer that

ν̃(x̃, dξ̃) = ν(x, dξ)1{ξd+1=0} = ν0(dξ)1{ξd+1=0}︸ ︷︷ ︸
=:ν̃0(dξ̃)

+

d∑
i=1

xi νi(dξ)1{ξd+1=0}︸ ︷︷ ︸
=:ν̃i(dξ̃)

+xd+1 × 0︸︷︷︸
=:ν̃d+1(dξ̃)

.

This establishes that X̃ is an AJD on E × R, along with the form its coefficients.

Now, the right-hand side of the Riccati equations appearing in the affine transform

formula for X̃ are given by functions R̃i(ũ), ũ = (u, ud+1), where

R̃i(ũ) = b̃>i ũ+ ũ>ãiũ+

∫
Rd+1

(eũ
>ξ̃ − 1− ũ>ξ̃)ν̃i(dξ̃)

=



0, i = d+ 1,

γiud+1 + b>i u+ 1
2u
>aiu+

∫
Rd(e

u>ξ − 1− u>ξ)νi(dξ)

= γiud+1 +Ri(u), i = 1, . . . , d,

R0(u), i = 0.
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Here Ri(u), i = 0, . . . , d, are the corresponding functions for X. (Warning: do not confuse

these functions with the integrated short-rate process R!).

Consider the solution (A,B) of the given system of ODEs. Define functions

φ̃ := −A, ψ̃ :=

(
−B
−1

)
.

Then

φ̃′ = −A′ = R0(−B) = R̃0(ψ̃),

ψ̃′i = −B′i = Ri(−B)− γi︸︷︷︸
=−γiψ̃d+1

= R̃i(ψ̃), i = 1, . . . , d,

ψ̃′d+1 = 0 = R̃d+1(ψ̃).

Furthermore, φ̃(0) = 0 and ψ̃(0) = (0,−1). Finally,

φ̃(T − t) + ψ̃(T − t)>X̃t = −A(T − t)−B(T − t)>Xt −Rt,

which is nonpositive by assumption. By the affine transform formula (Theorem 3.26) for

X̃ with ũ = (0,−1), we thus get

EQ[e−RT | Ft] = EQ[eũ
>X̃T | Ft] = eφ̃(T−t)+ψ̃(T−t)>X̃t = e−A(T−t)−B(T−t)>Xt−Rt .

Since RT −Rt =
∫ T
t rsds, it follows that

P (t, T ) = EQ[e−
∫ T
t rsds | Ft] = e−A(T−t)−B(T−t)>Xt ,

as desired.

Remark 5.23. The “≤ eRt” assumption was imposed to make Theorem 3.26 directly

applicable. With more work it can be eliminated. This assumption basically corresponds

to having rt ≥ 0, which is not always in agreement with reality: it is common to see

negative interest rates! (Although this is a rather recent phenomenon.)

We now consider three classical examples of affine short-rate models. These are all

one-factor models, where d = 1 and γ = 1, and thus rt = Xt.
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Example 5.24 (Vasiček model). The short-rate is R-valued and given by

drt = (b+ βrr)dt+ σdWt

for some real parameters b, β, σ. The Riccati equations for (A,B) are

A′ = bB − σ2

2
B2, A(0) = 0,

B′ = βB + 1, B(0) = 0.

These equations can be solved explicitly (−→ exercise).

Example 5.25 (CIR model). The short-rate is R+-valued and given by

drt = (b+ βrr)dt+ σ
√
rtdWt

for some real parameters b, β, σ with b ≥ 0. The Riccati equations for (A,B) are

A′ = bB, A(0) = 0,

B′ = βB − σ2

2
B2 + 1, B(0) = 0.

Again, these equations can be solved explicitly. However, unlike the Vasiček model the

equation for B is now quadratic, which makes solving it a little bit less trivial. It can

however still be done (c.f. Exercise 3.28).

Example 5.26 (Hull–White model). The short-rate is R-valued and given by

drt = (b(t) + βrr)dt+ σdWt

for some real parameters β, σ and some deterministic function b : R+ → R with suitable

regularity properties. Note that this model falls outside the time-homogeneous framework

developed in this course. Still, the same techniques can be used: Define

Mt := e−A(t,T )−B(t,T )rt−
∫ t
0 rsds

for fixed T and all t ∈ [0, T ]. Itô’s formula yields

dMt

Mt
= (−∂tA(t, T )− ∂tB(t, T )rt)dt−B(t, T )drt − rtdt+

1

2
B(t, T )2d〈r〉t

=
(

(−∂tA(t, T )− b(t)B(t, T ) +
1

2
σ2B(t, T )2) + (−∂tB(t, T )− βB(t, T )− 1)rt

)
dt

−B(t, T )σdWt.
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It follows that M is a local martingale if A and B satisfy the following time-inhomogeneous

Riccati equations:

∂tA(t, T ) = −b(t)B(t, T ) +
σ2

2
B(t, T )2, A(T, T ) = 0,

∂tB(t, T ) = −βB(t, T )− 1, B(T, T ) = 0.

(Note that these equations have terminal conditions rather than initial conditions, and

the time variable is calendar time rather than time-to-maturity. This also explains the

discrepancy in sign compared to the Vasiček and CIR models.) If M is in fact a true

martingale, we obtain as before that

EQ[e−
∫ T
0 rsds | Ft] = EQ[MT | Ft] = Mt = e−A(t,T )−B(t,T )rt−

∫ t
0 rsds,

which gives the bond price formula

P (t, T ) = e−A(t,T )−B(t,T )rt .

Why can it be useful to allow for time-dependent coefficients? The reason is that the

forward curve at time t = 0 can be matched exactly. More precisely, defining the time zero

forward curve

f0(T ) := −∂T logP (0, T ),

as well as the function g(T ) := σ2

2β (eβT − 1)2, one can show that

b(T ) = f ′0(T ) + g′(T )− β(f0(T ) + g(T )).

Since f0( · ) is in principle observed at time zero, b( · ) pinned down once σ and β have been

chosen. Put differently, it is always possible to choose b( · ) so that the time zero forward

curve produced by the model exactly matches the one observed in the market.

5.8 Polynomial term structure models

Fix a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions. The prob-

ability measure P is not supposed to be a risk-neutral measure. Instead, think of P as the

real-world measure.3 In this section we will consider state price density models.

3It is not necessary that P be the real-world measure. In principle P can represent any measure equivalent

to the real-world measure, and this flexibility is sometimes important in application. For the purposes of

this course, you can always think of P as being the real-world measure.



5.8. POLYNOMIAL TERM STRUCTURE MODELS 71

Definition 5.27. A state price density is a strictly positive semimartingale ζ = (ζt)t≥0.

In a state price density model where ζ is given, the time t (model) price of a payoff CT

maturing at time T with ζTCT ∈ L1(P) is given by

Ct :=
1

ζt
E[ζTCT | Ft], t ≤ T.

5.28. The key point with the above construction is that the resulting model is arbitrage-free

in a suitable sense. To explain this, recall that the fundamental theorem of asset pricing

states that a model is arbitrage-free if the discounted prices become (local) martingales

under some equivalent measure. A version of the theorem gives the same conclusion in a

situation where discounting is done not with the bank account process e
∫ t
0 rsds, but with a

general strictly positive semimartingale. In a state price density model, all price processes

become martingales after discounting by 1/ζ; indeed, C/(1/ζ) = ζC is a martingale by

construction.4 In a model where a short rate rt and pricing measure Q are given, the state

price density is ζt = e−
∫ t
0 rsds dQ

dP |Ft , as can be seen by an application of Bayes’ rule.

5.29. As we are interested in ZCBs, we always require that ζt ∈ L1(P) for all t ≥ 0. We

then have

P (t, T ) =
1

ζt
E[ζT | Ft].

5.30. Let now X be a polynomial jump-diffusion on E ⊆ Rd with coefficients (b, a, ν) and

generator G. Fix n ∈ N and a polynomial pζ ∈ Poln(E) with pζ > 0 on E, as well as a

constant α ∈ R. A polynomial term structure model is obtained by specifying the state

price density as

ζt := e−αtpζ(Xt).

Several key quantities can be directly computed in this model. To do so, recall the setup

from the moment formula: we fix a basis 1, h1, . . . , hN for Poln(E) and define

H(x) := (h1(x), . . . , hN (x)).

We let G ∈ R(1+N)×(1+N) be the corresponding matrix representation of G. The moment

formula states that

E[p(XT ) | Ft] = (1, H(Xt))e
(T−t)G~p

4Technically, one has that the NUPBR (No Unbounded Profit with Bounded Risk) property holds. This

property is also known as NA1 (No Arbitrage of the First Kind).



72 CHAPTER 5. APPLICATIONS IN FINANCE

holds for any polynomial p(x) = (1, H(x))~p in Poln(E) with coordinate representation

~p ∈ R1+N . From this we immediately get:

• Bond prices:

P (t, T ) =
1

ζt
E[ζT | Ft]

= e−α(T−t) 1

pζ(Xt)
E[pζ(XT ) | Ft]

= e−α(T−t) (1, H(Xt))e
(T−t)G~pζ

pζ(Xt)

Thus bond prices are fully explicit in a polynomial term structure model; there is not

even a need to solve any Riccati equations.

• Short rate: The short rate is defined by rt := −∂T logP (t, T )|T=t.
5 We then get

rt = α−
(1, H(Xt))G~pζ

pζ(Xt)
= α−

Gpζ(Xt)

pζ(Xt)
.

Thus the role of α is to adjust the level of short rate.

Remark 5.31. Note that both bond prices and short rate are rational functions of Xt,

where the degree of the numerators is at most the degree of the denominators. Moreover,

the denominators are strictly positive. In most cases, this leads to a bounded short rate.

In practice, the interval of possible short rates,

α− sup
x∈E

Gpζ(x)

pζ(x)
≤ rt ≤ α− inf

x∈E

Gpζ(x)

pζ(x)
,

is often bounded but rather wide.

5.32. Let us next briefly outline how option pricing is approached in a polynomial term

structure model.

• Bond options: Consider the payoff CT := (P (T, T ′) − K)+. This is a European

call option with maturity T and strike price K, written on a ZCB maturing at time

5As an exercise to motivate this definition, suppose a short rate rt is given along with a pricing measure

Q. Thus P (t, T ) = EQ[e−
∫ T
t rsds | Ft]. Assuming the short rate is bounded, show that rt = −∂TP (t, T )|T=t.
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T ′ > T . The model price at time t of such an option is

Ct :=
1

ζt
E[ζTCT | Ft]

=
1

ζt
E[(ζTP (T, T ′)− ζTK)+ | Ft]

=
1

ζt
E[q(XT )+ | Ft],

where q(XT ) is polynomial in XT . This is because ζT = e−αT pζ(XT ) is polynomial

in XT by construction, and ζTP (T, T ′) = E[ζT ′ | FT ] is polynomial in XT due to the

moment formula. Moreover, the degree of q is at most the degree of pζ .

• Options on bond portfolios: The payoff is now of the form

CT :=
( m∑
i=1

ciP (T, Ti)−K
)+

for some coefficients c1, . . . , cm and maturities T1, . . . , Tm of the underlying bonds,

where Ti > T for i = 1, . . . ,m. Again we obtain

Ct :=
1

ζt
E[ζTCT | Ft]

=
1

ζt
E
[( m∑

i=1

ciζTP (T, Ti)−K
)+
| Ft

]
=

1

ζt
E[q(XT )+ | Ft],

where q is a polynomial (not the same one as before of course!) with degree at most

that of pζ . The pricing problem for options on bond portfolios is therefore of the

same complexity as in the single bond case. This stands in stark contrast to affine

short-rate models.

• We have thus reduced the option pricing problem to the question of how to compute

E[q(XT )+ | Ft] for q a polynomial. This is done on a case-by-case basis. For example,

if X happens to be not only a PJD, but even an AJD, then Fourier pricing can be used

similarly as in Section 5.3. If X is not an AJD, one can instead use the polynomial

expansion method outlined in Section 5.5.

We end with two simple examples of one-factor polynomial term structure models.
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Exercise 5.33. Let X be a geometric Brownian motion and let the state price density be

a first degree polynomial in X,

dXt

Xt
= µdt+ σdWt, X0 > 0,

ζt = e−αt(1 +Xt),

where µ ∈ R, σ > 0, W is a standard Brownian motion, and α ∈ R. This specifies a

polynomial term structure model. Show that the ZCB prices and short rate are given by

P (t, T ) = e−α(T−t) 1 +Xte
µ(T−t)

1 +Xt
,

rt = α− µ Xt

1 +Xt
.

Exercise 5.34. Consider instead the model

dXt = κ(θ −Xt)dt+ σdWt,

ζt = e−αt(1 +X2
t ),

where κ, θ ∈ R, σ > 0, W is a standard Brownian motion, and α ∈ R. Again this specifies

a polynomial term structure model. Compute the bond prices and short rate.
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