Prof. Dr. N. Hungerbühler

Serie 3

Die Aufgaben 1–6 sind online zu lösen. Schicken Sie Ihre Lösung bis spätestens Freitag, den 16. März um 14:00 Uhr ab.

Die schriftlichen Aufgaben können Sie am selben Tag in Ihrer Übungsstunde abgeben oder im entsprechenden Fach im $\mathbf{HG}\ \mathbf{J}\ \mathbf{68}.$

- 1. Die Norm $\left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\| = |x| + |y|$ wird von einem Skalarprodukt induziert.
- (a) richtig
- (b) falsch
- **2.** $\langle a,b\rangle:=ab$ ist ein Skalarprodukt auf dem Vektorraum \mathbb{R} .
- (a) richtig
- (b) falsch
- **3.** Für jedes $x \in \mathbb{R}^n$ gilt $||x||_{\infty} \le ||x||_2 \le ||x||_1$.
- (a) richtig
- (b) falsch
- **4.** Die Folge von Funktionen $f_n(x) = \frac{1}{1+(nx)^2}$ auf [-1,1] konvergiert bezüglich der Norm $\|\cdot\|_{L^1}$ gegen die Funktion $f(x) \equiv 0$.
- (a) richtig
- (b) falsch
- **5.** Die Folge von Funktionen $f_n(x) = \frac{1}{1+(nx)^2}$ auf [-1,1] konvergiert bezüglich der Norm $\|\cdot\|_{L^{\infty}}$ gegen die Funktion $f(x) \equiv 0$.
- (a) richtig
- (b) falsch

- **6.** Der Betrag $|\cdot|$ ist eine Norm auf dem Vektorraum \mathbb{R} .
- (a) richtig
- (b) falsch
- 7. Sei $V = \mathbb{R}^2$, $D = \operatorname{diag}(2, \frac{1}{3})$. Wir definieren $\langle x, y \rangle := x^{\top} Dy$ für $x, y \in V$.
- a) Zeigen Sie, dass $\langle\cdot\,,\cdot\rangle$ in Vein Skalarprodukt definiert.
- b) Wie sieht die durch $\langle \cdot \, , \cdot \rangle$ induzierte Norm $\| \cdot \|$ aus?
- c) Berechnen Sie die Norm von $x = \begin{pmatrix} -1/2 \\ 3 \end{pmatrix}$.
- **8.** Wir betrachten die Funktionen $f_n(x) := \alpha_n \cos(nx)$ und $g_m(x) := \beta_m \sin(mx)$ für $m, n \in \mathbb{N}_0$, $m \ge 1$ und α_n , $\beta_m > 0$ im Vektorraum $V = C^0([0, 2\pi])$, den wir mit dem Skalarprodukt

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x) dx$$

ausstatten.

- a) Man rechne nach, dass je zwei verschiedene Funktionen aus dieser Menge orthogonal sind.
- b) Wie sind α_n und β_m zu wählen, damit alle Funktionen aus dieser Menge die Norm 1 haben?

Hinweis: Verwenden Sie die folgenden trigonometrischen Identitäten:

$$\sin u \sin v = \frac{1}{2} (\cos(u-v) - \cos(u+v))$$

$$\cos u \cos v = \frac{1}{2} (\cos(u-v) + \cos(u+v))$$

$$\sin u \cos v = \frac{1}{2} (\sin(u-v) + \sin(u+v))$$

9.

a) Sei $\|\cdot\|$ eine von einem Skalarprodukt induzierte Norm. Man rechne nach, dass dann die Parallelogrammregel gilt:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

b) Man verifiziere, dass die Maximumsnorm

$$||f||_{L^{\infty}} := \max\{|f(x)| : a \le x \le b\}$$

auf $C^0([a,b])$ die Axiome einer Norm erfüllt.

c) Auf dem Vektorraum der Polynome definiert

$$\langle P, Q \rangle := \int_0^1 P(x)Q(x) dx$$

ein Skalarprodukt. Bestimmen Sie ein Polynom zweiten Grades, das senkrecht auf $P_0(x) = 1$ und $P_1(x) = x$ steht.