Musterlösung Serie 6

- 1. Eine Abbildung $V_1 \times \ldots \times V_n \to W$ heisst multilinear, wenn sie linear in jedem Argument ist. Im Fall n=1 sind dies gerade lineare Abbildungen, im Fall n=2 heissen sie bilinear. (Hier seien die V_j und W endlich dimensionale Vektorräume über $\mathbb{K} = \mathbb{R}$ oder $= \mathbb{C}$.)
 - (a) Entscheide, ob die folgenden Abbildungen multilinear sind:

i.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x + 1$

ii.
$$f: \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$$
, $f(X,Y) = AXBYC$, wobei A, B, C (fest gewählte) $(n \times n)$ -Matrizen sind.

iii.
$$f(x) = ||x||$$

iv.
$$f(x) = ||x||^2$$

v.
$$f(x, y, z) = (x, y \times z)$$
 mit x, y, z in \mathbb{R}^3 , (,)=Skalarprodukt

(b) (Polarisationsformel) Jeder Multilinearform $f \colon \widetilde{V \times \ldots \times V} \to W$ kann man eine Funktion

$$F\colon V\to W$$

zuordnen durch

$$F(v) = f(v, v, ..., v)$$

F ist eine polynomiale Funktion, homogen vom Grad n.

Ist umgekehrt $F\colon V\to W$ polynomial und homogen vom Grad n, so kann man eine symmetrische Multilinearform (die Polarisation von F) definieren durch

$$\operatorname{Pol}_{F} \colon V \times \ldots \times V \to W, \, \operatorname{Pol}_{F}(v_{1}, \ldots, v_{n}) = \left. \frac{1}{n!} \frac{\partial}{\partial t_{1}} \cdots \frac{\partial}{\partial t_{n}} \right|_{t_{1} = \ldots = t_{n} = 0} F(t_{1}v_{1} + \ldots + t_{n}v_{n})$$

Zeige, dass dann gilt

$$F(v) = \operatorname{Pol}_{F}(v, ..., v). \tag{1}$$

- (c) Berechne jeweils den Grad und die Polarisation der folgenden homogenen polynomialen Funktionen
 - i. $X \mapsto \operatorname{tr}(X^3)$ für X eine $(n \times n)$ -Matrix
 - ii. $F: \mathbb{R}^2 \to \mathbb{R}, \quad F(x,y) = x^2 + 2xy + y^2$
 - iii. $X \mapsto \det(X)$ für X eine $(n \times n)$ -Matrix
- (d) Berechne die Ableitungen der Funktionen in 1.(c) i. und ii. unter Benutzung von (1) und der Produktregel aus der Vorlesung.

Lösung:

- (a) i. ...ist nicht (multi)linear, unter anderem da $f(0) \neq 0$.
 - ii. ...ist bilinear, da für alle $\lambda \in \mathbb{R}$ sowie für alle $M \in \mathbb{R}^{n \times n}$ gilt: $f(\lambda X, Y) = \lambda f(X, Y) = f(X, \lambda Y)$ sowie f(X + M, Y) = f(X, Y) + f(M, Y) und f(X, Y + M) = f(X, Y) + f(X, M).
 - iii. ...ist nicht multilinear auf \mathbb{R}^n für n > 0, da für einen Vektor x mit ||x|| > 0 gilt $f(x-x) = f(\overrightarrow{0}) = 0 \neq 2||x|| = f(x) + f(-x)$.

- iv. ...ist aus analogen Gründen nicht multilinear auf \mathbb{R}^n für n > 0.
- v. …ist als Verknüpfung der multilinearen Abbildungen Skalar- und Vektorprodukt wiederum selbst multilinear.
- (b) Berechne:

$$\operatorname{Pol}_{F}(v,\ldots,v) = \frac{1}{n!} \frac{\partial}{\partial t_{1}} \cdots \frac{\partial}{\partial t_{n}} \bigg|_{t_{1}=\ldots=t_{n}=0} F(t_{1}v+\ldots+t_{n}v)$$

$$= \frac{1}{n!} \frac{\partial}{\partial t_{1}} \cdots \frac{\partial}{\partial t_{n}} \bigg|_{t_{1}=\ldots=t_{n}=0} F((t_{1}+\ldots+t_{n})v)$$

$$= \frac{1}{n!} \frac{\partial}{\partial t_{1}} \cdots \frac{\partial}{\partial t_{n}} \bigg|_{t_{1}=\ldots=t_{n}=0} (t_{1}+\ldots+t_{n})^{n} F(v)$$

Hier haben wir ausgenutzt, dass F(v) homogen ist vom Grad n, also $F(\lambda v) = \lambda^n F(v)$. Wir rechnen weiter:

$$\dots = F(v) \left. \frac{1}{n!} \frac{\partial}{\partial t_1} \cdots \frac{\partial}{\partial t_n} \right|_{t_1 = \dots = t_n = 0} (t_1 + \dots + t_n)^n = F(v) \frac{1}{n!} n! = F(v)$$

(c) i. $F(X) = \operatorname{tr}(X^3)$ ist ein Polynom und homogen vom Grad 3. Bei der Berechnung von $F(t_1X_1 + t_2X_2 + t_3X_3)$ interessieren uns nur die Terme, in denen jedes t_i gerade einmal vorkommt. Da die Spur-Abbildung linear ist, erhalten wir

$$\operatorname{Pol}_{F}(X_{1}, X_{2}, X_{3}) = \frac{1}{6} \operatorname{tr}(X_{1}X_{2}X_{3} + X_{1}X_{3}X_{2} + X_{2}X_{1}X_{3} + X_{2}X_{3}X_{1} + X_{3}X_{1}X_{2} + X_{3}X_{2}X_{1}).$$

ii. $F(x,y)=(x+y)^2$ ist offensichtlich ein Polynom und homogen vom Grad 2. $(F(\lambda x,\lambda y)=\lambda^2 F(x,y))$. Wir berechnen

$$F(t_1x_1 + t_2x_2, t_1y_1 + t_2y_2) = (t_1(x_1 + y_1) + t_2(x_2 + y_2))^2$$

= $t_1^2(x_1 + y_1)^2 + 2t_1t_2(x_1 + y_1)(x_2 + y_2) + t_2^2(x_2 + y_2).$

Ableiten nach t_1 und t_2 "wählt" offensichtlich gerade den mittleren Term aus, so dass

$$Pol_F((x_1, y_1), (x_2, y_2)) = (x_1 + y_1)(x_2 + y_2)$$

iii. Die Determinante ist per Definition ein Polynom in den Matrixeinträgen. Wegen $det(\lambda A) = \lambda^n A$ ist sie homogen vom Grad n.

Seien nun A_1, \ldots, A_n $n \times n$ -Matrizen. Wir schreiben $A_i = (a_{i1} \ldots a_{in})$ wobei $a_{ij} \in \mathbb{R}^n$ die j-te Spalte von A_i ist. Wir benutzen aus der linearen Algebra, dass die Determinante linear ist in jeder Spalte separat. Wir erhalten daher

$$\det(t_1 A_1 + \ldots + t_n A_n) = \sum_{i_1} \ldots \sum_{i_n} t_{i_1} \cdots t_{i_n} \det(a_{i_1 1} \ldots a_{i_n n})$$

Für die Polarisation suchen wir darin genau die Terme, für die jedes t_i genau einmal vorkommt. Diese Terme sind aber

$$t_1 \cdots t_n \sum_{\sigma} \det(a_{\sigma(1)1} \dots a_{\sigma(n)n}),$$

wobei die Summe über alle Permutationen σ von $1, \ldots, n$ läuft. Wir erhalten also

$$\operatorname{Pol}_{\det}(A_1, \dots, A_n) = \frac{1}{n!} \sum_{\sigma} \det(a_{\sigma(1)1} \dots a_{\sigma(n)n})$$

(d) i. Wir betrachten zuerst X_2 und X_3 als fix und berechnen das Differential der Abbildung

$$\operatorname{Pol}(\cdot, X_2, X_3) \to \mathbb{R}$$

 $X_1 \mapsto \operatorname{Pol}_F(X_1, X_2, X_3)$

an einer beliebigen Stelle $X_1 \in \mathbb{R}^{n \times n}$. Wegen der Linearität dieser Abbildung ist dies gegeben durch

$$D\operatorname{Pol}_F(\cdot, X_2, X_3)_{X_1}: \mathbb{R}^{n \times n} \to \mathbb{R}$$

 $A \mapsto \operatorname{Pol}_F(A, X_2, X_3).$

Ebenso sind die Differentiale mit X_2 respektive X_3 als Variable gegeben durch $A \mapsto \operatorname{Pol}_F(X_1,A,X_3)$ und $A \mapsto \operatorname{Pol}_F(X_1,X_2,A)$. Um nun das Differential der Funktion F an einer Stelle X zu berechnen, müssen wir nach der Kettenregel lediglich alle diese Differentiale an der Stelle $X_i = X$ auswerten und addieren:

$$DF_X : \mathbb{R}^{n \times n} \to \mathbb{R}$$

 $A \mapsto \operatorname{Pol}_F(A, X, X) + \operatorname{Pol}_F(X, A, X) + \operatorname{Pol}_F(A, X, X)$
 $= 3\operatorname{tr}(AX^2 + XAX + X^2A),$

wobei wir im letzten Schritt erneut die Linearität der Spur ausgenutzt haben.

ii. Wir schreiben F als Verknüpfung $v\mapsto (v,v)\mapsto \mathrm{Pol}_F(v,v)$. Ableiten liefert die beiden Differentiale

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} x_2 + y_2 \\ x_2 + y_2 \\ x_1 + y_1 \\ x_1 + y_1 \end{pmatrix}.$$

Matrixmultiplikation sowie Einsetzen von $x_1 = x_2 = x$, $y_1 = y_2 = y$ liefert wie erwartet $\begin{pmatrix} 2x + 2y \\ 2x + 2y \end{pmatrix}$.

2. (a) Sei $f: U \subset \mathbb{R}^m \to \mathbb{C}$ eine C^2 -Funktion und $\Psi = (\Psi_1, \dots, \Psi_m) \colon V \subset \mathbb{R}^n \to U$ zweimal stetig differenzierbar. Sei $H_f = f''$ die Hessesche Matrix von f. Zeige, dass für die Hessesche Matrix von $F := f \circ \Psi$ gilt (für $a \in V$):

$$H_F(a) = H_{f \circ \Psi}(a) = (\Psi')^T H_{f(\Psi(a))}(\Psi') + \sum_{j=1}^m \partial_j f(\Psi(a)) H_{\Psi_m}(a)$$
 (2)

Schreibe ausserdem die obige Formel in Komponenten:

$$\frac{\partial^2}{\partial x_i \partial x_i} (f(\Psi_1(x_1, \dots, x_n), \dots, \Psi_m(x_1, \dots, x_n)) = \dots$$

(b) Die auf \mathbb{R}^2 definierte Funktion F sei in Polarkoordinaten gegeben durch $F(r,\phi)=r^3e^{i\phi}$. Finde einen Ausdruck f(x,y) für diese Funktion in Euklidischen Koordinaten. D. h. finde f(x,y) so, dass $F(r,\phi)=f(r\cos\phi,r\sin\phi)$, also $F=f\circ\Psi$ mit $\Psi(r,\phi)=(r\cos\phi,r\sin\phi)$.

Berechne dann die Hesseschen Matrizen von f und F in (x,y)=(1,0) (bzw. $(r,\phi)=(1,0)$). Setzte das Ergebnis in (2) ein und verifiziere so Deine Rechnung.

Lösung:

(a) Wir schreiben die Komponenten in U als y_1, \ldots, y_m , d.h. $f = f(y_1, \ldots, y_m)$. Wir bezeichnen mit $x = (x_1, \ldots, x_n)$ und $y = (y_1, \ldots, y_m)$ die Ortvektoren, wo benötigt. Zuerst berechnen wir mithilfe der Kettenregel die komponentenweise Darstellung. Es gilt zuerst für die erste Ableitung:

$$\begin{split} \frac{\partial}{\partial x_i} (f \circ \Psi)(x) &= \frac{\partial}{\partial x_i} f(\Psi(x_1, \dots, x_n), \dots, \Psi_m(x_1, \dots, x_n)) \\ &= \frac{\partial f}{\partial y_1} (\Psi(x)) \frac{\partial \Psi_1}{\partial x_i} + \dots \frac{\partial f}{\partial y_m} (\Psi(x)) \frac{\partial \Psi_m}{\partial x_i} \\ &= \sum_{k=1}^m \frac{\partial f}{\partial y_k} (\Psi(x)) \frac{\partial \Psi_k}{\partial x_i} \end{split}$$

und damit dann für die zweite Ableitung, mit Produkt- und Kettenregel:

$$\frac{\partial^2}{\partial x_i \partial x_j} (f \circ \Psi)(x) = \sum_{k,l=1}^m \frac{\partial^2 f}{\partial y_k \partial y_l} (\Psi(x)) \frac{\partial \Psi_k}{\partial x_i} \frac{\partial \Psi_l}{\partial x_j} + \sum_{k=1}^m \frac{\partial f}{\partial y_k} (\Psi(x)) \frac{\partial^2 \Psi_k}{\partial x_i \partial x_j}.$$

Damit folgt auch der erste Teil der Aufgabe, indem wir die entsprechenden Matrizen komponentenweise schreiben.

(b) Wegen der Eulerschen Formel $e^{i\phi}=\cos\phi+i\sin\phi$ ist hier $F(r,\phi)=r^3e^{i\phi}=r^2(r\cos\phi+ir\sin\phi)$, also $f(x,y)=(x^2+y^2)(x+iy)$ Wir berechnen zunächst die Hesseschen von f und F direkt

$$H_f(x,y) = \begin{pmatrix} 6x^2 + 2iy & 2(ix+y) \\ 2(ix+y) & 6iy + 2x \end{pmatrix} \qquad H_F(r,\phi) = e^{i\phi} \begin{pmatrix} 6r & 3ir^2 \\ 3ir^2 & -r^3 \end{pmatrix}$$

Auswerten in $(r, \phi) = (1, 0)$ bzw. $(x, y) = \Psi(1, 0) = (1, 0)$ ergibt:

$$H_f(1,0) = \begin{pmatrix} 6 & 2i \\ 2i & 2 \end{pmatrix} \qquad H_F(1,0) = \begin{pmatrix} 6 & 3i \\ 3i & -1 \end{pmatrix}$$

Um Formel (2) zu überprüfen, brauchen wir noch folgende Berechnungen, wobei wir jeweils zuerst ableiten und dann bei den Stellen (x,y)=(1,0) respektive $(r,\phi)=(1,0)$ auswerten:

$$\Psi' = \begin{pmatrix} \cos\phi & -r\sin\phi \\ \sin\phi & r\cos\phi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$H_{\Psi_1} = \begin{pmatrix} 0 & -\sin\phi \\ -\sin\phi & -r\cos\phi \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$$

$$H_{\Psi_2} = \begin{pmatrix} 0 & \cos\phi \\ \cos\phi & -r\sin\phi \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\partial_x f = 2x(x+iy) + (x^2 + y^2) = 3$$

$$\partial_y f = 2y(x+iy) + i(x^2 + y^2) = i.$$

Einsetzen in die in die Formel (2) ergibt dann

$$\left(\begin{array}{cc} 6 & 3i \\ 3i & -1 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 6 & 2i \\ 2i & 2 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + 3 \left(\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array}\right) + i \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right),$$

und man sieht, dass dies korrekt ist.

3. Sei $f(x,y) := \frac{\sin(x^2 \tan(y))}{1+x^2} \quad \text{und} \quad g(x,y) := \left\{ \begin{array}{ll} \frac{xy^3}{x^2+y^2} & \text{falls } (x,y) \neq (0,0) \\ 0 & \text{falls } (x,y) = (0,0) \end{array} \right.$

- (a) Berechne $\partial_{xx}f$, $\partial_{yy}f$, $\partial_{xy}f$ und $\partial_{yx}f$.
- (b) Berechne $\partial_{xx}g$, $\partial_{yy}g$, $\partial_{xy}g$ und $\partial_{yx}g$. Untersuche insbesondere den Punkt (0,0).
- (c) Begründe das Resultat aus (b).

Lösung:

Erinnern wir uns an den Satz von Schwarz:

Satz 1 Die Funktion f(x,y) besitze in $(x_0,y_0) \in \mathbb{R}^2$ die partiellen Ableitungen $\partial_x f(x_0,y_0)$, $\partial_y f(x_0,y_0)$ und $\partial_{xy} f(x_0,y_0)$. Sind $\partial_x f$, $\partial_y f$ und $\partial_{xy} f$ stetig in (x_0,y_0) , so existiert auch $\partial_{yx} f(x_0,y_0)$ und es gilt

$$\partial_{yx} f(x_0, y_0) = \partial_{xy} f(x_0, y_0).$$

(a) Sei
$$f(x,y) := \frac{\sin(x^2 \tan(y))}{1+x^2}$$
. Wir berechnen für alle $(x,y) \in \mathbb{R}^2$

$$\partial_x f(x,y) = \frac{2x \tan(y)(1+x^2)\cos(x^2 \tan(y)) - 2x \sin(x^2 \tan(y))}{(1+x^2)^2};$$

$$\partial_y f(x,y) = \frac{\cos(x^2 \tan(y))(1 + \tan^2(y))x^2}{1 + x^2}.$$

Daraus folgt

$$\partial_{xx} f(x,y) = \frac{8x^2 \sin\left(x^2 \tan(y)\right)}{(1+x^2)^3} - \frac{2\sin\left(x^2 \tan(y)\right)}{(1+x^2)^2} - \frac{8x^2 \cos\left(x^2 \tan(y)\right) \tan(y)}{(1+x^2)^2} + \frac{2\cos\left(x^2 \tan(y)\right) \tan(y)}{1+x^2} - \frac{4x^2 \sin\left(x^2 \tan(y)\right) \tan^2(y)}{1+x^2},$$

$$\partial_{yy} f(x,y) = \frac{-\sin(x^2 \tan(y))(1+\tan(y))^2 x^4 + 2x^2 \cos(x^2 \tan(y)) \tan(y)(1+\tan^2(y))}{1+x^2}$$

und

$$\partial_{yx} f(x,y) = (1 + \tan^2(y)) \left[\frac{-2x^3 \tan(y) \sin(x^2 \tan(y)) + 2x \cos(x^2 \tan(y))}{1 + x^2} - \frac{2x^3 \cos(x^2 \tan(y))}{(1 + x^2)^2} \right]$$

Mithilfe von Satz 1 folgt

$$\partial_{yx}f(x,y) = \partial_{xy}f(x,y)$$

(b) Sei nun

$$g(x,y) := \left\{ \begin{array}{ll} \frac{xy^3}{x^2+y^2} & \text{falls } (x,y) \neq (0,0) \\ 0 & \text{falls } (x,y) = (0,0) \end{array} \right.$$

Für $(x, y) \neq (0, 0)$ berechnen wir

$$\partial_x g(x,y) = \frac{(x^2 + y^2)y^3 - 2x^2y^3}{(x^2 + y^2)^2} = \frac{y^5 - x^2y^3}{(x^2 + y^2)^2};$$
$$\partial_y g(x,y) = \frac{3y^2(x^2 + y^2) - 2xy^4}{(x^2 + y^2)^2}.$$

Daraus berechnen wir

$$\begin{split} \partial_{xx}g(x,y) &= \frac{-2xy^3(x^2+y^2)^2 - 4x(x^2+y^2)\left[y^5-x^2y^3\right]}{(x^2+y^2)^4} \\ \partial_{yy}g(x,y) &= \frac{(x^2+y^2)^2\left[6yx^2+12y^3-8x-y^3\right] - 4y(x^2+y^2)\left[3y^2(x^2+y^2)-2xy^4\right]}{(x^2+y^2)^4} \end{split}$$

Für $(x, y) \neq (0, 0)$ folgt weiter mit Satz 1

$$\partial_{yx}g(x,y) = \partial_{xy}f(x,y) = \frac{(x^2 + y^2)^2 \left[5y^4 - 3x^2y^2\right] - 4y(x^2 + y^2) \left[y^5 - x^2y^3\right]}{(x^2 + y^2)^4}.$$

Es bleibt der Punkt (0,0) zu untersuchen. Für x=0 und $y\neq 0$ folgt

$$\partial_x g(x,y) = \lim_{h \to 0} \frac{g(h,y) - g(0,0)}{h} = \lim_{h \to 0} \frac{y^3}{h^2 + y^2} = y.$$

Für (0,0) folgt

$$\partial_x g(0,0) = \lim_{h \to 0} \frac{g(h,0) - g(0,0)}{h} = 0.$$

Zusammenfassend folgt also

$$\partial_x q(0,y) = y \quad \forall \ y \in \mathbb{R}.$$

Sei nun umgekehrt y=0 und x beliebig. Wir berechnen, falls $x\neq 0$

$$\partial_y g(x,0) = \lim_{h \to 0} \frac{g(x,h) - g(x,0)}{h} = \lim_{h \to 0} \frac{xh^2}{x^2 + h^2} = 0$$

Im fall x = 0 folgt

$$\partial_y g(0,0) = \lim_{h \to 0} \frac{g(0,h) - g(0,0)}{h} = 0.$$

Also folgt

$$\partial_u g(x,0) = 0.$$

Berechnen wir nun die Ableitungen 2. Ordnung in (0,0) folgt sofort

$$\partial_{xy}g(0,0) = 1 \neq 0 = \partial_{yx}g(0,0).$$

(c) Der Satz von Schwarz lässt sich offensichtlich nicht für beliebige Funktionen verwenden. In unserem Fall ist die partielle Ableitung $\partial_u g(x,y)$ offensichtlich unstetig in (0,0), denn

$$\lim_{x \to 0} \partial_y g(x, 0) = 0 \neq 3 = \lim_{y \to 0} \partial_y g(0, y).$$

Also müssen alle Vorraussetzungen von Satz 1 erfüllt sein, damit man ihn anwenden kann. Ist eine Vorraussetzung nicht erfüllt hat die Aussage nicht unbedingt Gültigkeit, wie die Funktion in b) beweist.

4. Sei $U \subset \mathbb{R}^n$ eine offene Teilmenge und $f \colon U \to \mathbb{R}$ eine zweimal stetig differenzierbare Funktion. Ein kritischer Punkt x_0 von f heisst nicht degeneriert, falls $\det(f''(x_0)) \neq 0$ gilt. Zeige, dass alle nicht degenerierten kritischen Punkte isoliert sind. d. h. jeder nicht degenerierte kritische Punkt besitzt eine Umgebung, die keine weiteren kritischen Punkte enthält.

Tipp: Wende das Inverse Funktionentheorem auf die Funktion $\nabla f : U \to \mathbb{R}^n$ an.

Lösung:

Die Ableitung der Funktion $g(x) := \nabla f(x)$ ist gegeben durch

$$dg(x) = \begin{pmatrix} \partial_{x_1} g_1(x) & \partial_{x_2} g_1(x) & \cdots & \partial_{x_n} g_1(x) \\ \partial_{x_1} g_2(x) & \partial_{x_2} g_2(x) & \cdots & \partial_{x_n} g_2(x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1} g_n(x) & \partial_{x_2} g_n(x) & \cdots & \partial_{x_n} g_n(x) \end{pmatrix}$$

$$= \begin{pmatrix} \partial_{x_1} \partial_{x_1} f(x) & \partial_{x_2} \partial_{x_1} f(x) & \cdots & \partial_{x_n} \partial_{x_1} f(x) \\ \partial_{x_1} \partial_{x_2} f(x) & \partial_{x_2} \partial_{x_2} f(x) & \cdots & \partial_{x_n} \partial_{x_2} f(x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1} \partial_{x_n} f(x) & \partial_{x_2} \partial_{x_n} f(x) & \cdots & \partial_{x_n} \partial_{x_n} f(x) \end{pmatrix} = d^2 f(x)$$

Sei nun $x_0 \in U$ ein nicht degenerierter kritischer Punkt von f. Aus $\det(d^2f(x_0)) \neq 0$ folgt mit obiger Rechnung, dass $dg(x_0)$ invertierbar ist. Wir können also das Inverse Funktionentheorem auf g an der Stelle x_0 anwenden. Dieses besagt, dass offene Umgebungen $x_0 \in V \subset U$ und $0 = g(x_0) \in W \subset \mathbb{R}^n$ exisiteren, sodass die Einschränkung

$$g|_V:V\to W$$

ein C^1 -Diffeomorphismus ist. Insbesondere ist die Einschränkung $g|_V$ injektiv und für alle $x\in V$ mit $x\neq x_0$ gilt

$$\nabla f(x) = g(x) \neq g(0) = 0.$$

Folglich besitzt f in V keinen anderen kritischen Punkt ausser x_0 und das zeigt die Behauptung.

5. Sei $A = (a_{ij})_{1 \le i,j \le n}$ eine symmetrische, reelle $n \times n$ Matrix. A heisst positiv definit wenn für alle $v \ne 0$ in \mathbb{R}^n gilt: $v^T A v > 0$, und negativ definit wenn für alle $v \ne 0$ in \mathbb{R}^n gilt $v^T A v < 0$. (Dies ist äquivalent dazu, dass alle Eigenwerte von A positiv, bzw. negativ sind.) Definitheit kann man mit dem folgenden Kriterium überprüfen.

(Sylvesters Kriterium) Sei $A_k := (a_{ij})_{1 \le i,j \le k}$ der obere $k \times k$ Block von A, und sei $d_k = \det(A_k)$ für $k = 1, \ldots, n$.

- (1) Dann ist A positiv definit genau dann wenn $d_k > 0$ für k = 1, ..., n.
- (2) A ist negativ definit genau dann wenn $d_1 < 0, d_2 > 0, d_3 < 0, d_4 > 0$, etc. gilt.
- (a) Benutze das Kriterium um die folgenden Matrizen auf positive bzw. negative Definitheit zu überprüfen.

i.
$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
ii. $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$
iii. $\begin{pmatrix} -1 & x \\ x & -1 \end{pmatrix}$, in Abhängigkeit von x .
iv. $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$, in Abhängigkeit von a, b, c .

- (b) Zeige (2) in Sylvesters Kriterium unter Benutzung von (1).
- (c) Zeige, dass eine positiv definite Matrix positive Determinante hat ohne Sylvesters Kriterium anzuwenden. (Hinweis: Wie ist die Determinante durch die Eigenwerte ausgedrückt?)
- (d) Zeige, dass falls A positiv definit ist, A_k auch positiv definit ist und folgere damit und mit 5c) die Richtung " \Rightarrow " von (1).
- (e) Beweise Sylvesters Kriterium (es fehlt noch Aussage (1), " \Leftarrow ") durch Induktion über n. Gehe für den Induktionsschritt $n \to n+1$ wie folgt vor:
 - i. Wir schreiben die $(n+1) \times (n+1)$ -Matrix A als $\begin{pmatrix} A_n & a \\ a^T & b \end{pmatrix}$. Wir setzen $v := -A_n^{-1}a$ und $P = \begin{pmatrix} \mathbbm{1}_{n \times n} & v \\ 0 & 1 \end{pmatrix}$. Zeige, dass dann gilt $P^TAP = \begin{pmatrix} A_n & 0 \\ 0 & c \end{pmatrix}$ für ein $c \in \mathbb{R}$.
 - ii. Zeige, dass c > 0. (Hinweis: $det(A) = det(P^T A P)$.)
 - iii. Folgere daraus, dass A positiv definit sein muss.

Schlussbemerkung: Sylvesters Kriterium wie oben ist verwendbar zur Bestimmung der Definitheit, nicht aber für die Semidefinitheit einer Matrix. Mit einer leichten Abwandlung (alle Hauptminoren haben Determinante ≥ 0) kann man auch die positive Semidefinitheit zeigen, dies soll jedoch hier ausser Acht gelassen werden.

Lösung:

- (a) i. $d_1 = 2$, $d_2 = \det A = 1$ und damit ist die Matrix positiv definit.
 - ii. $d_1 = 2$, $d_2 = 5$, $d_3 = \det A = 4$ und damit ist die Matrix positiv definit.
 - iii. $d_1 = -1$, $d_2 = 1 x^2$. Die Matrix ist in keinem Fall positiv definit, sie kann aber negativ definit sein und zwar genau dann wenn $d_2 > 0$, d.h. $1 x^2 > 0$ respektive $x \in (-1, 1)$.
 - iv. $d_1 = a$, $d_2 = ac b^2$. Damit die Matrix positiv definit ist muss gelten, dass $d_1 = a > 0$ und $d_2 = ac b^2 > 0$, d.h. bei fixiertem a > 0 und beliebigem b muss für c gelten: $c > \frac{b^2}{a}$. Damit die Matrix negativ definit ist, muss gelten, dass a < 0 und wiederum bei beliebigem b: $c < \frac{b^2}{a}$ (beachte das Vorzeichen, da a < 0).
- (b) Beachte, dass wenn A die Eigenwerte $\lambda_1, \ldots, \lambda_n$ hat, so hat -A die Eigenwerte $-\lambda_1, \ldots, -\lambda_n$ und damit ist eine Matrix negativ definit genau dann, wenn das Negative der Matrix positiv definit ist. Die Aussage folgt dann, wenn man verwendet, dass für eine k-dimensionale Matrix B und eine reelle Zahl r gilt $\det(rB) = r^k \det B$.
- (c) Sind $\lambda_1, \ldots, \lambda_n$ die Eigenwerte einer Matrix A, so gilt det $A = \lambda_1 \cdot \ldots \cdot \lambda_n$ und wenn alle Eigenwerte positiv sind, so ist diese Determinante positiv.
- (d) Ist A positiv definit, so bedeutet dies, dass $v^TAv>0$ für alle $v\neq 0$. Dies gilt insbesondere für alle v, die nur in den ersten k Einträgen nicht verschwindende Einträge haben und sonst 0 sind. Wenn wir einen solchen Vektor $v=(w,0,\ldots,0)$ betrachten, wobei $w\in\mathbb{R}^k$, so ist schnell ersichtlich, dass $v^TAv=w^TA_kw$. Diese sind alle positiv, wenn A positiv ist und damit ist A_k positiv definit. Mit Aufgabe 5c) folgt dann, dass det $A_k>0$. Da dies für alle $k\leq n$ gilt, haben wir " \Rightarrow " von (1) gezeigt.
- (e) i. Mit direktem Rechnen ergibt sich:

$$P^TAP = \left(\begin{array}{cc} A_n & 0 \\ v^TA_n + a^T & v^TA_nv + v^Ta + a^Tv + b \end{array} \right).$$

Setzen wir die Definition von v ein und nutzen aus, dass $A^T=A$, dann sehen wir, dass $v^TA_n+a^T=-a^TA_n^{-T}A_n+a^T=-a^TA_n^{-1}A_n+a^T=0$. Den Wert im letzten Eintrag der Matrix definieren wir als c.

- ii. Mit dem Hinweis gilt $0 < \det A = \det P^T A P = c \det A_n = cd_n$. Nach Voraussetzung ist $d_n > 0$ und damit muss auch c > 0 gelten, damit $cd_n > 0$.
- iii. Um zu zeigen, dass A positiv definit ist, müssen alle Eigenwerte positiv definit sein. Mit der Induktionsvoraussetzung wissen wir, dass A_n positiv definit ist (da die Determinanten der Minoren von A_n genau die d_1, \ldots, d_n sind) und damit positive Eigenwerte $\lambda_1, \ldots, \lambda_n$ hat. Nach der Aufteilung im vorherigen Teilschritt wissen wir damit, dass die Eigenwerte von A genau $\lambda_1, \ldots, \lambda_n, c$ sind und diese sind alle positiv.