Serie 10

1. Betrachte das (zeitunabhängige) Vektorfeld

$$v(x) = Ax,$$

mit $x \in \mathbb{R}^2$ und $A \in \mathbb{R}^{2 \times 2}$ eine 2×2 -Matrix.

Zeichne für folgende A jeweils das Phasenportrait.

(a)
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
 (d) $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

(b)
$$A = \begin{pmatrix} 0 & 0.5 \\ -0.5 & 0 \end{pmatrix}$$
 (e) $A = \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix}$

(c)
$$A = \begin{pmatrix} 0.1 & 0.5 \\ -0.5 & 0.1 \end{pmatrix}$$
 (f) $A = \begin{pmatrix} 2 & 2 \\ 0 & -2 \end{pmatrix}$

2. Berechne alle maximalen Integralkurven von:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix} + (1 - x^2 - y^2) \begin{pmatrix} x \\ y \end{pmatrix} \tag{1}$$

Gehe dazu wie folgt vor:

(a) Verwende den Ansatz (Polarkoordinaten)

$$x = r(t)\cos\phi(t), \qquad y = r(t)\sin\phi(t)$$

und zeige, dass die Differentialgleichung damit zu

$$\dot{r} = r(1 - r^2), \qquad \dot{\phi} = 1$$

- (b) Löse die Gleichung $\dot{r} = r(1 r^2)$ durch Separation der Variablen (s. Analysis I). Betrachte dazu getrennt die Anfangswerte $r_0 \in \{0, 1\}; r_0 \in (0, 1); r_0 \in (1, \infty)$.
- (c) Verwende (a) und (b), um die allgemeine Lösung von (1) zu finden.
- 3. Wir betrachten die Bewegung eines Teilchens der Masse 1 in einem durch ein $(C^2$ -)Potential $V: \mathbb{R}^n \to \mathbb{R}$ gegebenen Kraftfeld. Die Bahnkurve x(t) des Teilchens erfüllt die Differentialgleichung zweiter Ordnung

$$\ddot{x}(t) = -\operatorname{grad} V(x(t))$$

(a) Überführe die Differentialgleichung in eine Dgl. 1. Ordnung in der in der Vorlesung betrachteten Form

$$\dot{\phi}(t) = v(\phi(t))$$

Was ist hier der Phasenraum?

Hinweis: Führe zusätzliche neue Variablen ein: $p := \dot{x}$.

(b) Zeige, dass die Funktion

$$H(x,p) = \frac{p^2}{2} + V(x)$$

konstant entlang aller Integralkurven von v ist.

Bemerkung: Man nennt Funktionen, die konstant entlang der Integralkurven sind, auch erste Integrale. Physikalisch sind dies erhaltene Grössen, z.B. die Energie.

- (c) Bestimme für n=1 und $V(x)=\frac{x^2}{2}$ (harmonischer Oszillator) die Integralkurven und zeichne das Phasenportrait. Was geschieht, wenn man stattdessen $V(x)=-\frac{x^2}{2}$ nimmt?
- 4. Wir betrachten die Differentialgleichung

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

- (a) Berechne den Fluss $\Phi: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$, $\Phi(t, x_0, y_0) := (x(t), y(t))$, wobei (x(t), y(t)) die Lösung zum Anfangswert $(x(0), y(0)) = (x_0, y_0)$ bezeichne.
- (b) Skizziere das Bild des Quadrates $Q := \{(x, y) \in \mathbb{R}^2 \mid 1 \le x \le 3, -1 \le y \le 1\}$ unter Φ_1 und Φ_2 , wobei $\Phi_t(x, y) := \Phi(t, x, y)$ sei.
- (c) Bestimme den Flächeninhalt der Gebiete $\Phi_1(Q)$ und $\Phi_2(Q)$.
- 5. Im \mathbb{R}^2 betrachten wir die lineare Differentialgleichung

$$\dot{x} = Ax \qquad \text{mit} \qquad A := \begin{pmatrix} 2 & \text{-}1 \\ \text{-}3 & 0 \end{pmatrix}.$$

(a) Berechne alle Lösungen der Differentialgleichung.

$$x(t) = c_1 v_1 e^{\lambda_1 t} + c_2 v_2 e^{\lambda_2 t}$$

- (b) Welche Lösungen streben für $t \to \infty$ gegen 0? Welche Lösungen streben für $t \to -\infty$ gegen 0?
- (c) Skizziere die Lösungen der Differentialgleichung.

Abgabe: in der Woche vom 7. Mai 2018, in der Übungsstunde oder in den Fächern im HG F 28