Serie 12

1. Hinweis: Die folgende Aufgabe ist eine alte Prüfungsaufgabe.

Bestimme das Volumen des Körpers

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, z \ge 0, \sqrt{x} + \sqrt{y} + \sqrt{z} \le 1 \right\} \,.$$

(a) Zeige, dass die Funktion $(x+y)^{-a}$ über den 2-dimensionalsen Standardsimplex Δ^2 genau für a < 2 intergrierbar ist. In diesem Fall gilt

$$\int_{\Delta^2} \frac{1}{(x+y)^a} \, dx dy = \frac{1}{2-a}$$

(b) Zeige, dass die Funktion $(x+y)^{-a}$ genau für a>2 über den Aussenraum $\mathbb{R}^2_+\backslash\Delta^2$ integriertbar ist. In diesem Fall gilt

$$\int_{\mathbb{R}^2_+ \backslash \Delta^2} \frac{1}{(x+y)^a} \, dx dy = \frac{1}{a-2}$$

Hinweis: Verwende die Jacobi-Transformation (x,y) = J(u,v) := (u(1-v), uv).

3. Es sei $K \subset \mathbb{R}^3$ der Durchschnitt der beiden Zylinder

$$Z_1 := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1\} \text{ und } Z_2 := \{(x, y, z) \in \mathbb{R}^3 \mid y^2 + z^2 \le 1\}.$$

Berechne das Volumen von K.

4. Es bezeichne

$$\Delta^n := \{ x \in [0,1]^n \mid x_1 + x_2 + \dots + x_n \le 1 \}$$

das n-dimensionale Standardsimplex

(a) Berechne das Volumen von Δ^n .

(b) Berechne das Integral $\int_{\Lambda^n} e^{x_1 + x_2 + \dots + x_n} dx_1 \cdots dx_n$.

Hinweis: Betrachte die Substitution $y_k = x_1 + \cdots + x_k$ für $k = 1, \ldots, n$.

(c) Das Simplex im \mathbb{R}^n mit den Eckpunkten $a_0, a_1, \dots, a_n \in \mathbb{R}^n$ ist die Menge

$$D := \left\{ \sum_{k=1}^{n} t_k (a_k - a_0) \in \mathbb{R}^n \,\middle|\, (t_1, \dots, t_n) \in \Delta^n \right\}.$$

Zeige:

$$vol_n(D) = \frac{1}{n!} |\det(a_1 - a_0, a_2 - a_0, \dots, a_n - a_0)|.$$

(a) Bestimme das zwischen der Kugel $x^2 + y^2 + z^2 = 8$ und dem Paraboloid $4z = x^2 + y^2 + 4$ eingeschlossene Volumen.

Hinweis: Verwende Zylinderkoordinaten.

(b) Sei B der Bereich im ersten Quadranten des \mathbb{R}^2 begrenzt durch die Kurven

$$xy = 1$$
, $xy = 3$, $x^2 - y^2 = 1$, $x^2 - y^2 = 4$.

Berechne $\int_B (x^2 + y^2) dx dy$. **Hinweis:** Substituiere u = xy und $v = x^2 - y^2$.

Abgabe: in der Woche vom 21. Mai 2018, in der Übungsstunde oder in den Fächern im HG F 28