Wahrscheinlichkeit und Statistik

Patrick Cheridito

1 Information zur Vorlesung und den Übungen

- 1. Es gibt eine Webseite
- 2. Vorlesung am Mi von 8:15–10
- 3. Übungen am Mo 15:15–17 und Di 13:15–15. Schreiben Sie sich bitte in eine Übungsgruppe ein. **Abgabe:** In der Übungsstunde oder spätestens bis Mittwochs um 13:00 im HG G 53.2

2 Kurze Repetition von diskreten Wahrscheinlichkeitsräumen und Zufallsvariablen

Definition 2.1

- Ein endlicher Wahrscheinlichkeitsraum besteht aus
 - a) einer endlichen Menge $\Omega = \{\omega_1, \dots, \omega_N\}$ und
 - b) Elementarwahrscheinlichkeiten $p_1, \ldots, p_N \in [0,1]$ so dass $\sum_{n=1}^N p_n = 1$
- Ein abzählbarer Wahrscheinlichkeitsraum besteht aus
 - a) einer abzählbaren Menge $\Omega = \{\omega_1, \omega_2, ...\}$ und
 - b) Elementarwahrscheinlichkeiten $p_1, p_2, ... \in [0, 1]$ so dass $\sum_{n=1}^{\infty} p_n = 1$
- Ein diskreter Wahrscheinlichkeitsraum ist ein Wahrscheinlichkeitsraum, der entweder endlich oder abzählbar ist.
- Ein Elementarereignis ist ein Element $\omega \in \Omega$
- Ein Ereignis ist eine Teilmenge $A \subseteq \Omega$
- Die Potenzmenge von Ω ist die Menge aller Teilmengen von Ω . Sie wird mit $\mathcal{P}(\Omega)$ oder 2^{Ω} bezeichnet
- Das Wahrscheinlichkeitsmass auf einem diskreten Wahrscheinlichkeitsraum ist die Abbildung $P: 2^{\Omega} \to [0,1]$, definiert durch

$$P[A] = \sum_{n, \omega_n \in A} p_n, \quad A \subseteq \Omega.$$

Bemerkung 2.2 $P: 2^{\Omega} \to [0,1]$ hat folgende Eigenschaften:

- (i) $P[\Omega] = 1$
- (ii) $P[\bigcup_{n=1}^{\infty} A_n] = \sum_{n=1}^{\infty} P[A_n]$ für jede Folge $A_1, A_2, ...$ von paarweise disjunkten Ereignissen (d.h. $A_n \cap A_k = \emptyset$ für $n \neq k$).

1

Beispiele 2.3

- 1. Bernoulliverteilung: $\Omega = \{0, 1\}, P[0] = 1 p, P[1] = p$ für ein $p \in [0, 1]$: Be(p)
- 2. Diskrete Gleichverteilung: $\Omega = \{\omega_1, \dots, \omega_N\}, p_n = 1/N$: Unif $(\omega_1, \dots, \omega_N)$
- 3. Binomialverteilung: $\Omega = \{0, 1, \dots, N\}, p_n = \binom{N}{n} p^n (1-p)^{N-n}$, für ein $p \in [0, 1]$: Bin(N, p)
- 4. Geometrische Verteilung: $\Omega = \mathbb{N} = \{1, 2, ...\}, p_n = p(1-p)^{n-1}$ für ein $p \in (0, 1)$: Geom(p)
- 5. Poisson Verteilung: $\Omega = \mathbb{N}_0 = \{0, 1, ...\}, p_n = e^{-\lambda} \frac{\lambda^n}{n!}$ für ein $\lambda > 0$: Pois (λ)

Definition 2.4 Seien A und B Ereignisse, so dass P[A] > 0. Die bedingte Wahrscheinlichkeit von B gegeben A ist

 $P[B \mid A] := \frac{P[A \cap B]}{P[A]}$

Satz 2.5 (von der totalen Wahrscheinlichkeit) Sei $A_1, ..., A_N$ ein Zerlegung von Ω , so dass $P[A_n] > 0$ für all n. Dann gilt für jedes Ereignis B,

$$P[B] = \sum_{n=1}^{N} P[B \mid A_n] P[A_n]$$

Satz 2.6 (Formel von Bayes) Sei $A_1, ..., A_N$ ein Zerlegung von Ω , so dass $P[A_n] > 0$ und B ein Ereignis, so dass P[B] > 0. Dann gilt für jedes n,

$$P[A_n \mid B] = \frac{P[B \mid A_n]P[A_n]}{\sum_{k=1}^{N} P[B \mid A_k]P[A_k]}$$

Definition 2.7 Ereignisse A_1, \ldots, A_M werden unabhängig genannt, wenn

$$P\left[\bigcap_{i=1}^{k} A_{m_i}\right] = \prod_{i=1}^{k} P[A_{m_i}]$$

für jede nichtleere Teilmenge $\{m_1, \ldots, m_k\}$ von $\{1, \ldots, M\}$.

Definition 2.8

- Eine (reellwertige) Zufallsvariable auf einem diskreten Wahrscheinlichkeitsraum ist eine Abbildung $X \colon \Omega \to \mathbb{R}$
- Der Wertebereich von X ist $W(X) := X(\Omega) = \{x_1 = X(\omega_1), x_2 = X(\omega_2), ...\}$
- Die Verteilungsfunktion (VF) von X ist die Funktion $F_X : \mathbb{R} \to [0,1]$, die definiert ist durch

$$F_X(x) := P[X \le x] := P[\{\omega : X(\omega) \le x\}]$$

• Die Gewichtsfunktion oder diskrete Dichte von X ist die Funktion $p_X \colon \mathcal{W}(X) \to [0,1]$, die definiert ist durch $p_X(x_n) := P[X = x_n]$, n = 1, 2, ...

- Die Verteilung von X is das Wahrscheinlichkeitsmass μ_X auf $\mathcal{W}(X)$ (oder \mathbb{R}), das definiert ist durch $\mu_X[x_n] := p_X(x_n) = P[X = x_n], \ n = 1, 2, ...$
- Zwei Zufallsvariablen X und Y sind gleich in Verteilung, falls $\mu_X = \mu_Y$. Notation: $X \stackrel{(d)}{=} Y$
- Der Erwartungswert von X is definiert durch

$$E[X] := \sum_{\omega \in \Omega} X(\omega) P[\omega] = \sum_{x_n \in \mathcal{W}(X)} x_n p_X(x_n),$$

falls $\sum_{\omega \in \Omega} |X(\omega)| P[\omega] = \sum_{x_n \in \mathcal{W}(X)} |x_n| p_X(x_n) < \infty$. Andernfalls, ist der Ewartungswert nicht definiert.

• Falls $E[X^2] < \infty$, definiert man die Varianz von X durch

$$Var(X) := E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

und die Standardabweichung durch

$$\sigma(X) := \sqrt{\operatorname{Var}(X)}$$

• Falls, $E[X^2] < \infty$ und $E[Y^2] < \infty$, dann definiert man die Kovarianz

$$Cov(X, Y) := E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

und die Korrelation

$$\rho(X,Y) := \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

Definition 2.9

• Für Zufallsvariablen X_1, \ldots, X_d auf einem diskreten Wahscheinlichkeitsraum Ω definiert man die gemeinsame Verteilungsfunktion $F \colon \mathbb{R}^d \to [0,1]$ durch

$$F(x_1, \dots, x_d) := P[X_1 \le x_1, \dots, X_d \le x_d]$$

• Die gemeinsame Gewichtsfunktion $p: \mathbb{R}^d \to [0,1]$ von X_1, \ldots, X_d ist gegeben durch

$$p(x_1,\ldots,x_d) := P[X_1 = x_1,\ldots,X_d = x_d]$$

• X_1, \ldots, X_d sind unabhängig, falls

$$F(x_1,\ldots,x_d)=F_{X_1}(x_1)\times\cdots\times F_{X_d}(x_d)$$
 für alle $x\in\mathbb{R}^d$

Bemerkung 2.10 Für Zufallsvariablen X_1, \ldots, X_d auf einem diskreten Wahrscheinlichkeitsraum Ω sind die folgenden Aussagen äquivalent:

- (i) X_1, \ldots, X_d sind unabhängig
- (ii) $p(x_1, \ldots, x_d) = p_{X_1}(x_1) \times \cdots \times p_{X_d}(x_d)$ für alle $x \in \mathbb{R}^d$

- (iii) $P[X_1 \in B_1, \dots, X_d \in B_d] = P[X_1 \in B_1] \times \dots \times P[X_d \in B_d]$ für alle Teilmengen $B_i \subseteq \mathcal{W}(X_i)$, $i = 1, \dots, d$
- (iv) $E[f_1(X_1) \times \cdots \times f_d(X_d)] = E[f_1(X_1)] \times \cdots \times E[f_d(X_d)]$ für alle beschränkten Funktionen $f_i \colon \mathbb{R} \to \mathbb{R}$, $i = 1, \ldots d$

Definition 2.11 Für zwei Zufallsvariablen X und Y auf einem diskreten Wahrscheinlichkeitsraum Ω definiert man die bedingte Gewichtsfunktion von X gegeben dass Y = y durch

$$p_{X|Y}(x \mid y) := P[X = x \mid Y = y] = \frac{p(x,y)}{p_Y(y)}$$

 $f\ddot{u}r \ p_Y(y) > 0 \ und \ 0 \ sonst.$

3 Allgemeine Wahrscheinlichkeitsräume

Definition 3.1 Sei Ω eine beliebige Menge; z.Bsp. $\{1,\ldots,N\}$, \mathbb{N} , \mathbb{R} , \mathbb{R}^d , $\mathbb{R}^\mathbb{N}$, $\mathbb{R}^{\mathbb{R}_+}$, ...

- Ein Mengensystem $\mathcal{F} \subseteq 2^{\Omega}$ heisst σ -Algebra, falls
 - (i) $\Omega \in \mathcal{F}$
 - (ii) $A^c \in \mathcal{A}$ für jedes $A \in \mathcal{F}$
 - (iii) $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$ für jede Folge $A_1, A_2, ...$ in \mathcal{F}
- Eine Abbildung $P \colon \mathcal{F} \to [0,1]$ ist ein Wahrscheinlichkeitsmass, falls
 - (i) $P[\Omega] = 1$
 - (ii) $P[\bigcup_{n=1}^{\infty} A_n] = \sum_{n=1}^{\infty} P[A_n]$ für jede Folge $A_1, A_2, ...$ in \mathcal{F} von paarweise disjunkten Mengen $A_n \in \mathcal{F}$ (d.h. $A_n \cap A_k = \emptyset$ für $n \neq k$)
- Ein Wahrscheinlichkeitsraum besteht aus einem Triplett (Ω, \mathcal{F}, P) , wobei Ω eine beliebige Menge ist, \mathcal{F} eine σ -Algebra und P ein Wahrscheinlichkeitsmass
- Ein Ereignis ist eine Menge $A \in \mathcal{F}$
- Eine (reellwertige) Zufallsvariable (ZV) ist eine messbare Abbildung $X: \Omega \to \mathbb{R}$, wobei messbar bedeutet, dass $\{X \leq x\}$ ein Ereignis ist für alle $x \in \mathbb{R}$