Adnptive Schuittweitensteverung (~DATLAB Pseudo-Code)
Function $[t, y]=\operatorname{adap} t-o d e($

$$
\begin{aligned}
j & =0 \\
h & =h 0 \\
\epsilon_{0} l & =a t_{0} l+\left|y_{0}\right| \cdot r t_{0} l \\
\varepsilon & =\epsilon_{0 l}
\end{aligned}
$$

while $\left(t_{j}<T\right)$ Paramelor

$$
h=h \cdot \min \left(\text { facmax, max }\left(\text { facmin }^{\infty} f_{a c} \cdot\left(\frac{\epsilon_{0} l}{\varepsilon}\right)^{1 / p+1}\right)\right)
$$

("Details"zu h mo Ubuny)

$$
\begin{aligned}
& y_{j+\Lambda}=y_{j}+\ldots \\
& \hat{y}_{j+1}=y_{j}+\ldots \quad \text { mit h-HClb.- } \\
& \varepsilon=\left|y_{j+1}-\hat{y}_{j+1}\right| \text { oder } \hat{\varepsilon}=\ldots \text {, Methode } \\
& t_{0} l=a t_{0 l}+\max \left(\left|y_{j}\right|,\left|\hat{y}_{j+1}\right|\right) \cdot r t_{0} l \quad(T r s) \\
& \text { if }(\varepsilon<\epsilon \circ) \\
& \text { (TKA... } 4 \\
& \text { auch } \\
& \text { mojlich) } \\
& t_{j+1}=t_{j}+h \\
& y_{j+1}=\hat{y}_{j+1} \longleftarrow \text { Nehmer das } K V \text {. } \\
& j=j+\Lambda \\
& \text { and }
\end{aligned}
$$

and

