Wichtige Hinweise

- Die Prüfung dauert 90 Minuten.
- Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=10 Seiten) eigenhändig und handschriftlich verfasste Zusammenfassung, nicht ausgedruckt, nicht kopiert. Sonst keine Hilfsmittel zugelassen.
- Begründen Sie jeweils Ihre Aussagen. Unbegründete Lösungen (außer bei Multiple-Choice-Aufgaben falls nicht explizit gefordert) werden nicht akzeptiert!

Name		Note
Vorname		
Studiengang		
Leginummer		
Prüfung	Numerische Methoden	
Datum	29.01.2018	

1	2	3	4	5	Punkte	
10	10	10	10	10	50	

- Legen Sie Ihre Legi auf den Tisch. Schalten Sie Ihr Handy aus.
- Lösen Sie Aufgaben 1 und 2 auf dem Angabenblatt.
 Lösen Sie Aufgaben 3, 4 und 5 auf Extrablättern. Beginnen Sie hierfür für jede Aufgabe eine neue Seite, und schreiben Sie Ihren Namen und Ihre Leginummer auf alle Blätter.
- Schreiben Sie nicht mit Bleistift. Verwenden Sie einen Stift mit blauer oder schwarzer Farbe (keinesfalls rot oder grün).
- Versuchen Sie Ihren Lösungsweg möglichst klar darzustellen und arbeiten Sie sorgfältig!
- Schauen Sie das Prüfungsblatt erst an, wenn der Assistent das Signal dazu gibt!

Viel Erfolg!

Aufgaben:

1. Wahr oder Falsch [10 Punkt(e)]

Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende Kästchen und zwar so:

wahr	falsch
×	

Als Markierungen sind ausschliesslich Kreuzchen \times erlaubt. Wenn Sie ein Kreuzchen rückgängig machen wollen, streichen Sie es klar erkennbar durch.

Jedes richtig gesetzte Kreuzchen ergibt **2 Punkte**, jedes falsch gesetzte Kreuzchen ergibt **-2 Punkte**. Die erreichte Gesamtpunktzahl wird aber nie negativ sein - wir runden auf 0 auf.

		wahr	falsch
1)	Die Funktion $\varphi(x) = x^2 + \frac{3}{16}$ hat zwei reelle Fixpunkte.		
2)	Das durch folgendes Butcher-Tableau gegebene Runge-Kutta Einschrittverfahren		
	$\begin{array}{c c} 1/2 & 1/2 \\ \hline & 1 \end{array}$		
	ist implizit.		
3)	3) Das folgende Anfangswertproblem genügt den Voraussetzungen von Picard-Lindelöf $\dot{y}(t)=y(t)^2, y(0)=1.$		
4)	4) Das Integral $\int_0^1 x^{2/7} dx = 7/9$ wird mittels der summierten Simpson-Regel Q_2^N approximiert. Für genügend kleines $h = \frac{b-a}{N}$ verhält sich der Quadraturfehler ϵ^N wie $O(h^4)$.		
5)	Das Interpolationspolynom		
	$p(x) = \frac{1}{2}(x-2)(x-3) - 4(x-1)(x-3) + (x-1)(x-2)$		
	interpoliert folgende Stütz-Stellen und -Werte: $(1,1),(2,4)$ und $(3,2)$.		

2. Explizites und Implizites Euler-Verfahren [10 Punkt(e)]

Für das Anfangswertproblem $\dot{y}(t) = f(t, y(t))$ ist ein Schritt des impliziten Euler-Verfahrens durch

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$$

definiert.

a) [3 Punkt(e)] Betrachten Sie folgendes AWP

$$\dot{y}(t) = -\lambda y(t), \qquad y(t_0) = y_0.$$

Führen Sie (analytisch) einen Schritt (mit Schrittweite h) mit dem expliziten und impliziten Euler-Verfahren aus.

b) [4 Punkt(e)] Betrachten Sie folgendes AWP

$$\dot{y}(t) = -t(y(t))^2, \qquad y(t_0) = y_0 > 0,$$

Führen Sie (analytisch) einen Schritt (mit Schrittweite h) mit dem expliziten und impliziten Euler-Verfahren aus.

c) [3 Punkt(e)] Die numerisch berechnete Lösung für das AWP

$$\dot{y}(t) = -20y(t), \qquad y(0) = 1,$$

mit Schrittweiten $h=2^{-i}$ fur i=2,4,6,8 und Endzeit T=1 ist in Abbildung 1 gezeigt. Wurde das explizite oder implizite Euler-Verfahren zur Berechnung der Werte in Abbildung 1 verwendet?

Sie müssen keine Begründung angeben.

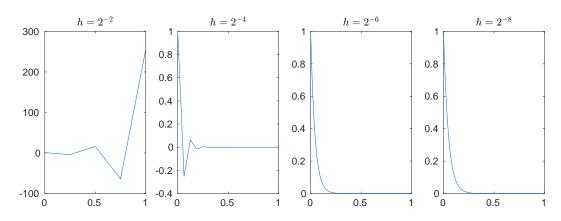


Abbildung 1

3. Heun Verfahren [10 Punkt(e)]

In dieser Aufgabe wollen wir das Verfahren von Heun implementieren. Das Heun Verfahren ist gegeben durch

$$k_1 = f(t_j, y_j),$$

 $k_2 = f(t_j + h, y_j + hk_1),$
 $y_{j+1} = y_j + \frac{h}{2}(k_1 + k_2).$

a) [3 Punkt(e)] Skizzieren Sie dieses Verfahren in folgenden Richtungsfeld, d.h. skizzieren Sie direkt Abbildung 2.

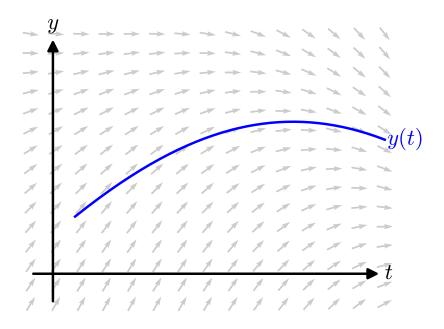


Abbildung 2

b) [7 Punkt(e)] Implementieren Sie dieses Verfahren in folgendem Matlab Template.

```
function [t,y] = heunVerfahren(f,t0,T,y0,N)
% Zweck: integriere eine gewoehnliche Diff.-Gleichung erster
      Ordnung mit dem Heun Verfahren.
% Parameters:
% f rechte Seite f(t,y(t)) der gew. Diff.-Gl.
% t0,T Start- und End-Zeit
% y0
          Anfagswert
        Anzahl Schritte
응 N
% Returns:
% t Zeiten
% y approx. Loesung zu Zeiten t
end
```

4. Konsistenzordnung und Stabilitätsfunktion [10 Punkt(e)]

Wir betrachten folgendes Runge-Kutta Einschrittverfahren:

$$k_1 = f(t_j, y_j),$$

 $k_2 = f\left(t_j + \frac{2}{3}h, y_j + \frac{2}{3}hk_1\right),$
 $y_{j+1} = y_j + \frac{h}{4}(k_1 + 3k_2).$

- a) [1 Punkt(e)] Geben Sie das zugehörige Butcher-Tableau an.
- b) [4 Punkt(e)] Bestimmen Sie die Konsistenzordnung dieses Verfahren.
- c) [1 Punkt(e)] Was können Sie über die Konvergenzordnung schlussfolgern? (Falls Sie b) nicht gelöst haben, nehmen Sie einfach die Variabel s für die Konsistenzordnung.)
- d) [2 Punkt(e)] Berechnen Sie die Stabilitätsfunktion dieses Verfahren.
- e) [2 Punkt(e)] Bestimmen Sie das Stabilitätsintervall dieses Verfahren.

5. Gauss-Legendre Quadratur [10 Punkt(e)]

Gegeben ist folgendes Legendre Polynom

$$P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}.$$

a) [3 Punkt(e)] Bestimmen Sie die zwei Punkte Gauss-Legendre Quadratur $G_1[f]$ auf dem Referenz-Intervall [-1, 1]:

$$G_1[f] = \sum_{j=0}^{1} w_j \cdot f(x_j).$$

- b) [2 Punkt(e)] Bestimmen Sie die Konvergenzordnung von $G_1[f]$ für genügend Glatte f.
- c) [1 Punkt(e)] Transformieren Sie $G_1[f]$ auf ein beliebiges Intervall [a, b].
- d) [2 Punkt(e)] Bestimmen Sie eine Näherung von

$$I[x^4] = \int_{-1}^1 x^4 dx = \frac{2}{5}.$$

mittels der summierten Quadraturregel $G_1^N[f]$ mit N=1 und N=2. Hinweis:

$$\left(\frac{1}{2} + \frac{1}{2\sqrt{3}}\right)^4 = \frac{7}{36} + \frac{\sqrt{3}}{9},$$
$$\left(\frac{1}{2} - \frac{1}{2\sqrt{3}}\right)^4 = \frac{7}{36} - \frac{\sqrt{3}}{9}.$$

e) [2 Punkt(e)] Berechnen Sie den Quadraturfehler für $G_1^1[x^4]$ und $G_1^2[x^4]$ aus d). Stimmt die tatsächliche Fehlerreduktion mit der theoretischen Voraussage aufgrund der Konvergenzordnung überein?