Lösung - Serie 11

Abgabetermin: Mittwoch, 23.05.2018 in die Fächli im HG F 28.

Homepage der Vorlesung: https://metaphor.ethz.ch/x/2018/fs/401-2284-00L/

- 1. Es sei λ das Lebesgue-Mass auf (0,1) und μ das Zählmass auf der σ -Algebra der Lebesguemessbaren Mengen in (0,1). Zeige:
 - a) μ hat keine Lebesgue-Zerlegung bezüglich λ .
 - **b)** Obwohl $\lambda \ll \mu$ und λ beschränkt ist, existiert kein $f \in L^1(\mu)$ so, dass $d\lambda = f d\mu$.

Lösung:

a) Es sei $\mu = \mu_a + \mu_s$. Der Träger von μ_s , im Folgenden mit A bezeichnet, ist eine Lebesgue-Nullmenge. Die Menge $(0,1)\setminus A$ ist also insbesondere nicht leer. Wähle einen Punkt $x_0\in (0,1)\setminus A$. Es muss gelten

$$1 = \mu(\{x_0\}) = \mu_a(\{x_0\}) + \mu_s(\{x_0\}) = \mu_a(\{x_0\}).$$

Das Lebesguemass λ verschwindet aber auf $\{x_0\}$, deshalb ist μ_a nicht absolut stetig bezüglich λ . Somit hat μ keine Lebesgue-Zerlegung bezüglich λ .

b) Wir erinnern, dass ein Mass λ genau dann absolut stetig bzgl. eines anderen Masses μ ist, wenn $\mu(A) = 0 \Longrightarrow \lambda(A) = 0$ für alle messbaren A gilt. Dies ist hier offensichtlich der Fall:

$$\mu(A) = 0 \iff A = \varnothing \implies \lambda(A) = 0,$$

also ist $\lambda \ll \mu$. Wir zeigen die Behauptung, indem wir die gegenteilige Annahme auf einen Widerspruch führen. Angenommen es gäbe eine Funktion $f \in L^1(\mu)$, so dass

$$\lambda(B) = \int_{B} f \, d\mu.$$

Durch die Betrachtung von Positiv-Teil und Negativ-Teil können wir annehmen, dass $f \ge 0$. Dann folgt daraus

$$1 = \lambda \big((0,1) \big) \ge \lambda(B) = \int_B f d\mu = \sup_{s \le f} \int_B s \, d\mu = \sup_{s \le f} \sum_{i > 1} f(\alpha_i) \mu(s^{-1}(\alpha_i) \cap B)$$

Somit kann f höchstens auf einer abzählbaren Menge ungleich der Nullfunktions sein. Es sei $M \subset (0,1)$ die Menge aller Punkte an denen f nicht verschwindet. Es gilt

$$\lambda((0,1) \setminus M) = \int_{(0,1) \setminus M} f \, d\mu = 0. \tag{1}$$

Es gilt allerdings bereits $\lambda(M)=0$, da M abzählbar ist. Somit kann (1) nicht gelten, also Widerspruch. Es gibt somit kein solches f.

2. Konvergenzsatz von Vitali Es sei (X, \mathcal{A}, μ) ein endlicher Massraum. Eine Teilmenge $\Phi \subset L^1(\mu)$ hat *gleichmässig absolut stetige Integrale*, falls es für alle $\varepsilon > 0$ ein $\delta > 0$ gibt so dass für alle $f \in \Phi$ gilt

$$\mu(E) < \delta \Longrightarrow \Big| \int_E f \, d\mu \Big| < \varepsilon.$$

- a) Zeige: Jede endliche Teilmenge $\Phi \subset L^1(\mu)$ hat gleichmässig absolut stetige Integrale.
- **b)** Beweise: Falls $\{f_n\}_{n\geq 1}\subset L^1(\mu)$ gleichmässig absolut stetige Integrale hat und $f_n\to f$ mit $n\to +\infty$ fast überall, dann gilt $f\in L^1(\mu)$ und $f_n\to f$ in $L^1(\mu)$.

Lösung: Siehe Aufgabe 2. in

http://www2.math.ethz.ch/education/bachelor/lectures/fs2014/math/analysis3/loesung12.pdf

3. Es sei $[F] \in L^1(\mathbb{R}^k)$ eine Äquivalenzklasse von Funktionen. Ein Punkt $x \in \mathbb{R}^k$ heisst Lebesgue-Punkt von [F] falls eine reelle Zahl LF(x) existiert, so dass für alle $f \in [F]$ gilt

$$\lim_{r\to 0^+}\frac{1}{\lambda(B(x,r))}\int_{B(x,r)} \left|f(y)-LF(x)\right|d\lambda(y)=0.$$

Zeige:

- a) Falls $x \in \mathbb{R}^k$ eine Lebesgue-Punkt von [F] ist, dann ist die Zahl $LF(x) \in \mathbb{R}$ eindeutig bestimmt.
- **b)** Falls $x \in \mathbb{R}^k$ eine Lebesgue-Punkt von $f \in [F]$ ist, dann ist x ist ein Lebesgue-Punkt von [F] und LF(x) = f(x).
- c) Definiere

$$f_L(x) := \begin{cases} LF(x) & x \text{ ist ein Lebesgue-Punkt von } [F] \\ 0 & \text{sonst} \end{cases}$$

Es gilt $f_L \in [F]$.

Lösung:

a) Nehme an, dass y, y' Zahlen für den Lebesgue-Punkt x von [F] sind. Wir berechnen

$$\begin{split} |y-y'| &= \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |y-y'| d\lambda(z) \\ &\leq \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |y-f(z)| d\lambda(z) + \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |f(z)-y'| d\lambda(z). \end{split}$$

Wir können also den Grenzwert $r \to 0^+$ betrachten und erhalten y = y', wie gewünscht.

b) Nehme an, dass x ein Lebesgue-Punkt von $f \in [F]$ ist und es sei $g \in [F]$. Wir wissen, dass sich f und g nur auf einer Lebesgue-Nullmenge unterscheiden. Somit

$$\begin{split} & \lim_{r \to 0^+} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |g(y) - LF(x)| \, d\lambda(y) \\ & = \lim_{r \to 0^+} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |f(y) - g(y)| \, d\lambda(y) \\ & + \lim_{r \to 0^+} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |f(y) - LF(x)| \, d\lambda(y) = 0. \end{split}$$

Wir haben also gezeigt, dass x ein Lebesgue-Punkt von [F] ist. Nach Definition eines Lebesgue-Punktes von f muss gelten, dass LF(x) = f(x).

- c) Dies ist eine direkte Konsequenz von Satz 7.7 im Skript und Teilaufgabe b).
- **4.** Beweise analog zu Lemma 7.3 aus der Vorlesung die folgende Aussage: Es sei I eine Indexmenge und es sei W die Vereinigung einer beliebigen Familie offener Bälle $B_i := B(x_i, r_i) \subset \mathbb{R}^k$ mit $i \in I$. Falls W beschränkt ist, dann existiert eine abzählbare Teilmenge $S \subset I$ so dass für alle verschiedenen $i, j \in S$ gilt

$$B_i \cap B_j = \varnothing$$
 und $W \subset \bigcup_{i \in S} B(x_i, 5r_i)$

Lösung: Beachte, dass die Zahl

$$R := \sup \left\{ r_i : i \in I \right\}$$

endlich ist, weil W beschränkt ist. Setze $\mathcal{F}=\{B_i:i\in I\}$. Es bezeichne Ω die Menge welche alle disjunkten Familien $\mathcal{B}\subset\mathcal{F}$ enthält, so dass falls $B\in\mathcal{F}$ einen Ball von \mathcal{B} schneidet, dann gibt es einen Ball $B'\in\mathcal{B}$ so dass $B\cap B'\neq\varnothing$ und 2r'>r, wobei r der Radius von B und r' der Radius von B' ist. Es sei B_0 ein Ball mit Radius grösser gleich R/2. Beachte $\{B_0\}\in\Omega$. Die Menge Ω ist also nicht leer. Es lässt sich einfach zeigen, dass Ω ein maximales Element \mathcal{G} enthält. Es sei $B(x,r)\in\mathcal{F}$ ein Ball. Nach der Maximalität von \mathcal{G} gibt es also ein $B(x',r')\in\mathcal{G}$ so dass $2r'\geq r$ und $B\cap B'\neq\varnothing$. Man sieht leicht, dass

$$B(x,r) \subset B(x',r+r+r') \subset B(x',5r').$$

Es bleibt noch zu zeigen, dass \mathcal{G} abzählbar ist. Weil \mathbb{R}^k separabel ist, kann \mathcal{G} höchstens abzählbar sein.