Serie 7 - Lösung

Abgabetermin: Mittwoch, 18.04.2018 in die Fächli im HG F 28.

Homepage der Vorlesung: https://metaphor.ethz.ch/x/2018/fs/401-2284-00L/

- 1. Es sei μ ein Radonmass auf einem kompakten Hausdorffraum X mit $\mu(X)=1$. Zeige: Es existiert eine kompakte Teilmenge $K_{\mu}\subset X$ so dass
 - 1. $\mu(K_{\mu}) = 1$ und
 - 2. für alle kompakten echten Teilmengen $L \subset K_{\mu}$ gilt $\mu(L) < \mu(K_{\mu})$.

Die Menge K_{μ} heisst *Träger* von μ .

Lösung: Wir definieren

$$K_{\mu} := \{x \in X : \text{ für alle offenen Mengen } U \subset X \text{ mit } x \in U \text{ gilt } \mu(U) > 0\}.$$

Die Menge K_{μ} ist abgeschlossen, weil falls $x \notin K_{\mu}$ gibt es eine offene Menge $U_x \subset X$ mit $x \in U_x$ so dass $\mu(U_x) = 0$ und deshalb folgt für alle $y \in U_x$, dass $y \in K_{\mu}^c$.

Im Folgenden zeigen wir, dass $\mu(L)=\mu(K\cap L)$ für alle kompakten Teilmengen $L\subset X$. Es genügt zu zeigen, dass $\mu(L\cap K_{\mu}^c)=0$. Beachte, dass $(U_x)_{x\in L\cap K_{\mu}^c}$ eine offene Überdeckung von $A:=L\cap K_{\mu}^c$ ist. Es sei $\varepsilon>0$, nach Satz 4.3 (1) gibt es eine kompakte Menge $C_\varepsilon\subset X$ so dass $C_\varepsilon\subset A$ und $\mu(A\setminus C_\varepsilon)<\varepsilon$. Weil C_ε kompakt ist, gibt es eine endliche Teilüberdeckung $(U_{x_k})_{1\leq k\leq N}$ mit $C_\varepsilon\subset\bigcup_{k=1}^N U_{x_k}$. Somit

$$\mu(C_{\varepsilon}) \le \sum_{k=1}^{N} \mu(U_{x_k}) = 0,$$

also

$$\mu(A) = \mu(C_{\varepsilon}) + \mu(A \setminus C_{\varepsilon}) < \varepsilon.$$

Wir haben also gezeigt, $\mu(L \cap K_{\mu}^{c}) = 0$ wie behauptet.

Somit $1 = \mu(X) = \mu(K_{\mu} \cap X) = \mu(K_{\mu})$. Falls $L \subset K_{\mu}$ ein echte kompakte Teilmenge ist, gibt es einen Punkt $x \in K_{\mu}$ so dass $x \notin L$, und da X als kompakter Hausdorff-Raum ein normaler topologischer Raum ist, gibt es eine offene Menge $U \subset X$ so dass $x \in U$ und $L \cap U = \emptyset$. Weil $x \in K_{\mu}$ gilt $\mu(U) > 0$. Wir berechnen

$$\mu(L) = \mu(K_\mu \cap L) < \mu(K_\mu \cap L) + \mu(U) = \mu(K_\mu \cap L) + \mu(K_\mu \cap U) \le \mu(K_\mu),$$

wie gefordert.

2. Beweise den Satz von Egoroff:

Es sei (X, \mathcal{A}, μ) ein endlicher Massraum und $(f_n)_{n\geq 1}$ eine Folge reellwertiger messbarer Funktionen auf X, welche punktweise gegen $f\colon X\to\mathbb{R}$ konvergiert. Dann existiert für alle $\varepsilon>0$ eine messbare Menge $E\subset X$ mit $\mu(X\setminus E)<\varepsilon$, so dass die Folge $(f_n)_{n\geq 1}$ auf E gleichmässig gegen f konvergiert.

Lösung: Wir unterteilen den Beweis in zwei Teile. Zuerst beweisen wir eine Hilfsaussage und danach verwenden wir die Hilfsaussage um den Satz von Egoroff zu beweisen.

1. (Hilfsaussage) Es sei $E\subset X$ eine messbare Teilmenge und $\varepsilon>0$. Für jedes $\delta\in (0,\mu(E))$ existiert eine Menge $A:=A(E,\varepsilon,\delta)$ und eine ganze Zahl N:=N(A) so dass $A\subset E$ mit $\mu(E\setminus A)<\delta$ und

$$\sup_{x \in A} |f_n(x) - f(x)| < \varepsilon \quad \text{ für alle } n \ge N.$$

Im Folgenden beweisen wir diese Hilfsaussage. Wir definieren

$$E_n := \{ x \in E : |f_k(x) - f(x)| < \varepsilon \text{ für alle } k \ge n \}.$$

Es gilt

$$E = \bigcup_{n=1}^{+\infty} E_n$$
 und $E = \bigcup_{n>1} A_n$,

wobei $A_k = E_k \setminus (E_1 \cup \cdots \cup E_{k-1})$. Somit

$$\mu(E) = \sum_{n=1}^{+\infty} \mu(A_n),$$

es gibt also ein $N \ge 1$ so dass

$$\sum_{k=N+1}^{+\infty} \mu(A_k) < \delta.$$

Wir definieren $A:=igcup_{k=1}^N A_k$, weil $A_k\subset E_k$ gilt für alle $n\geq N$, dass

$$\sup_{x \in A} |f_n(x) - f(x)| < \varepsilon.$$

Die Menge A hat also die geforderten Eigenschaften.

2. (Beweis Satz von Egoroff) Sei $\varepsilon > 0$. Wir definieren die Folge E_n für $n \ge 1$ wie folgt:

$$E_1 := X, \quad E_{n+1} := A\left(E_n, \frac{\varepsilon}{2^n}, \frac{\varepsilon}{2^n}\right).$$

Wir setzen

$$E := \bigcap_{n>1} E_n.$$

Wir berechnen

$$\mu(X \setminus E) \le \sum_{n=1}^{+\infty} \mu(E_n \setminus E_{n+1}) \le \sum_{n=1}^{+\infty} \frac{\varepsilon}{2^n} = \varepsilon.$$

Auf dieser Menge konvergiert die Folge $(f_n)_{n\geq 1}$ gleichmässig gegen f: Falls $\varepsilon'>0$ ist, existiert eine ganze Zahl $n_0\geq 1$, so dass $\frac{\varepsilon}{2^{n_0}}<\varepsilon'$ und da $E\subset E_{n_0}$ gilt,

$$\sup_{x \in E} |f_n(x) - f(x)| < \frac{\varepsilon}{2^{n_0}} < \varepsilon' \quad \text{für alle } n \ge N(E_{n_0}).$$

3. Es sei μ ein Radonmass auf einem lokal-kompakten Hausdorff-Raum X und f eine reellwertige messbare Funktion auf X. Es sei $A\subset X$ eine messbare Teilmenge so dass $\mu(A)<+\infty$ und f(x)=0 für alle $x\in X\setminus A$. Zeige: Dann existiert eine Folge $(g_n)_{n\geq 1}$ mit $g_n\in C_c(X)$ und $g_n\to f$ punktweise mit $n\to +\infty$ fast überall.

Lösung: Für jedes $n \ge 1$ sei $g_n \in C_c(X)$ eine Funktion so dass

$$\mu\left(\left\{x \in X : f(x) \neq g_n(x)\right\}\right) < \frac{1}{2^n};$$

solch eine Funktion existiert aufgrund des Satzes von Lusin. Wir definieren $E_n:=\{x\in X:f(x)\neq g_n(x)\}$ und

$$E := \bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} E_k.$$

Beachte, dass wenn $g_n(x)$ nicht gegen f(x) konvergiert mit $n \to +\infty$, dann gilt $x \in E$. Nach Konstruktion hat E Mass Null und deshalb konvergiert die Folge $(g_n)_{n \ge 1}$ punktweise mit $n \to +\infty$ fast überall nach f.

4. Konstruiere eine Funktion $f: X \to \mathbb{R}$, welche die Voraussetzungen des Satzes von Lusin (Satz 4.6 im Skript) erfüllt, so dass keine Funktion $g \in C_c(X)$ existiert, die

$$\mu\left(\left\{x\in X:f(x)\neq g(x)\right\}\right)=0$$

erfüllt (anstelle von " $< \varepsilon$ " für ein vorgegebenes $\varepsilon > 0$).

Lösung: Es sei X:=[0,1] und μ das Lebesgue-Mass auf X. Wir definieren $f\colon X\to\mathbb{R}$ mittels f(x)=1 falls $1/2< x\le 1$ und f(x)=0 sonst. Es sei $g\in C_c(X)$ eine Funktion mit kompaktem Träger. Es gilt

$$\mu\left(\left\{x\in X:f(x)=g(x)\right\}\right)\leq\mu\left(\left\{x\in X:g(x)=0\right\}\right)+\mu\left(\left\{x:g(x)=1\right\}\right).$$

Weiter gilt,

$$\mu(\lbrace x \in X : g(x) \in (0,1) \rbrace) = \mu(g^{-1}((0,1))) > 0,$$

da die Menge $g^{-1}\big((0,1)\big)\subset X$ offen und aufgrund des Zwischenwertsatzes *nicht-leer* ist. Deshalb gilt

$$\mu\left(\left\{x \in X : f(x) \neq g(x)\right\}\right) \ge \mu(\left\{x \in X : g(x) \in (0,1)\right\}) > 0,$$

was zu zeigen war.