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Solution Series 10

Q1. Let (Ω,A,P) be a probability space and (Zn)n∈N a sequence of random variables.

(a) Prove that if Zn
P→ c ∈ R, then for all bounded and continuous functions f

E (f(Zn))→ f(c).

(b) Show that if Zn → c ∈ R in distribution, then Zn
P→ c.

Solution:

(a) Take ε > 0, we know by continuity of f that there exists δ > 0 so that for all x ∈
[c− δ, c+ δ], |f(x)− f(c)| ≤ ε. Then

|E (f(Zn)− f(c)) | ≤ E (|f(Zn)− f(c)|)
≤ E

(
|f(Zn)− f(c)|1{|Zn−c|≤δ}

)
+ E

(
|f(Zn)− f(c)|1{|Zn−c|>δ}

)
≤ ε+ ‖f‖∞P(|Zn − c| > δ) −−−→

n→∞
ε.

(b) Take ε > 0 and define

fε(x) 7→ min

{
1

ε
d(x, [c− ε, c+ ε]), 1

}
.

fε is clearly a continuous function. Note that fε(x) = 0 if x ∈ [c− ε, c+ ε] and f(x) = 1
if |x− c| ≥ 2ε. Then we have that:

P(|Xn − c| ≥ 2ε) ≤ fε(Xn)→ fε(c) = 0.

Q2. Take the following probability space (Ω,A,P) = ([0, 1],B([0, 1]), λ|[0,1]), where λ|[0,1] is the
Lebesgue measure over [0, 1]. Let Xn(ω) = 1An(ω) a sequence of random variables with
An ∈ B([0, 1]).

(a) Under which condition for (An)n∈N we have that Xn
P→ 0.

(b) Write the event {ω : Xn(ω)→ 0} with help of the sets (An)n∈N.

(c) Find a sequence (An)n∈N of events so that Xn
P→ 0 but {ω : Xn(ω)→ 0} = ∅.

Solution:
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(a) We know that for all ε ≤ 1
2

P(|Xn| ≤ ε) = P(|Xn| = 0) = P(Acn),

so Xn
P→ 0 iff P(Acn)→ 1.

(b) Given that Xn takes only values in {0, 1} we know it converges if from a point onward
it only takes the value 0, so

{ω : limXn(ω) = 0} =
⋃
k∈N

⋂
n≥k

Acn = lim inf Acn.

(c) For n ∈ N define rn = blog2(n)c and define kn = n− 2rn . Take

An =

[
kn
2rn

,
kn + 1

2rn

]
,

note that P(An) = rn → 0, so Xn
P→ 0. Additionally note that for each rn there are

2rn+1 − 2rn = 2rn different kn associated to it and also that:

P

( ⋃
n:rn=r

An

)
= 2rn

1

2rn
= 1,

so
⋃
n:rn=r

An = [0, 1]. Then we know that for each r ∈ N and for all x ∈ [0, 1] there
exits n ∈ N so that rn = r and x ∈ An, so Xn(x) is 1 infinitely many times. Thus,
{ω : Xn(ω)→ 0} = ∅.

Q3. Let (Xi)i≥1 be a sequence of random variables with

E (Xi) = µ ∀i,
V ar(Xi) = σ2 <∞ ∀i,
Cov(Xi, Xj) = R(|i− j|) ∀i, j.

Define Sn :=
∑n

i=1Xi.

(a) Prove that if limk→∞R(k) = 0 then limn→∞
Sn

n
= µ in probability.

(b) Prove that if
∑

k∈N |R(k)| <∞ then limn→∞ nV ar(
Sn

n
) exists.

Solution:

(a) Thanks to Chebyshev inequality

P

[∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε

]
≤ 1

ε2
V ar

(
Sn
n

)
it’s enough to prove that V ar(Sn

n
)→ 0 (n→∞).
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Computing the variance we have:

V ar

(
Sn
n

)
= V ar

(
1

n

n∑
i=1

Xi

)

=
1

n2

(
n∑
i=1

V ar(Xi) + 2
∑
i<j

Cov(Xi, Xj)

)

=
1

n2

(
nσ2 + 2

n−1∑
k=1

(n− k)R(k)

)

=
1

n

(
σ2 + 2

n−1∑
k=1

(
1− k

n

)
R(k)

)

Then it’s enough to prove that:

lim
n→∞

2

n

n−1∑
k=1

(n− k
n

)
R(k) = 0 ,

which is obtained by a similar proof of the convergence of Cesàro means.

(b) We just have to compute

lim
n→∞

nV ar

(
Sn
n

)
= lim

n→∞

(
σ2 + 2

n−1∑
k=1

(
1− k

n

)
R(k)

)

= σ2 + 2
∞∑
k=1

R(k)− 2 lim
n→∞

n−1∑
k=1

k

n
R(k) .

Define:

an(k) :=

{
k
n
R(k) (k < n)

0 (k ≥ n)

it’s clear that an(k) → 0 (n → ∞) for all k. Then we just have to use dominated
convergence to prove that this part goes to 0. Note that |an(k)| ≤ |R(k)|and |R(k)| is
absolutely convergente. So:

lim
n→∞

n−1∑
k=1

k

n
R(k) = lim

n→∞

n−1∑
k=1

an(k) = lim
n→∞

∞∑
k=1

an(k) =
∞∑
k=1

lim
n→∞

an(k) = 0

Then

lim
n→∞

nV ar
(Sn
n

)
= σ2 + 2

∞∑
k=1

R(k).

Q4. (a) Let µn and νn two sequence of probability measure on R. and εn ∈ (0, 1) with εn → 0.
Prove that if µn → µ in distribution, then (1− εn)µn + εnνn → µ in distribution.
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(b) Construct with the help of a) a sequence µn so that µn → µ in distribution but
limn→∞

∫
|x|dµn(x) 6=

∫
|x|dµ(x).

(c) Prove that if µn → µ in distribution and supn
∫
x2dµn(x) = K <∞ then∫

|x|dµn(x)→
∫
|x|dµ(x).

Hint: For all M prove that∫
min{|x|,M}dµn(x)→

∫
min{|x|,M}dµ(x).

and that
0 ≤

∫
|x|dµn(x)−

∫
min{|x|,M}dµn(x) ≤ K/M.

Solution:

(a) Take f : R→ R a continuous and bounded function∣∣∣∣∫ fd((1− εn)µn + εnνn)−
∫
fdµ

∣∣∣∣ ≤ ∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣+ εn

∣∣∣∣∫ fdνn −
∫
fdµn

∣∣∣∣
≤
∣∣∣∣∫ fdµn −

∫
fdµ

∣∣∣∣+ 2εn‖f‖∞ → 0.

(b) Take µn = δ0, i.e. µ(A) = 1{0∈A} and νn = δn. It’s clear that µn → δ0 (it’s a constant
sequence), so

(
1− 1

n

)
µn + 1

n
νn → δ0, but:∫

|x|d
((

1− 1

n

)
µn +

1

n
νn

)
(x) =

1

n
n = 1 6= 0 =

∫
|x|dδ0(x).

(c) We prove first both claims in the Hint. We know that min{| · |,M} is a bounded
continuous function. So it’s clear that∫

min{|x|,M}dµn(x)→
∫

min{|x|,M}dµ(x),
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and ∫
|x|dµn(x)−

∫
min{|x|,M}dµn(x)

=

∫
(|x| −M)1|x|≥Mdµn(x)

≤
∫
|x|1|x|≥Mdµn(x)

≤

√∫
x2dµn(x)

∫
1|x|≥Mdµn(x)

≤
√
K

√∫
1|x|2≥M2dµn(x)

≤
√
K
√
K/M2

= K/M

thanks to Cauchy-Schwarz inequality and Chebychev inequality. The above difference
is clearly non-negative.
By the monotone convergence theorem∫

min{|x|,M}dµ(x)
M→∞
↗

∫
|x|dµ(x)

To finish, take ε > 0, and M so that K/M ≤ ε, and that∣∣∣∣∫ min{|x|,M}dµ(x)−
∫
|x|dµ(x)

∣∣∣∣ ≤ ε.

Take n0 such that for all n ≥ n0,∣∣∣∣∫ min{|x|,M}dµn(x)−
∫

min{|x|,M}dµ(x)

∣∣∣∣ ≤ ε.

Finally,∣∣∣∣∫ |x|dµn(x)−
∫
|x|dµ(x)

∣∣∣∣
≤
∣∣∣∣∫ |x|dµn(x)−

∫
min{|x|,M}dµn(x)

∣∣∣∣+

∣∣∣∣∫ min{|x|,M}dµn(x)−
∫

min{|x|,M}dµ(x)

∣∣∣∣
+

∣∣∣∣∫ min{|x|,M}dµ(x)−
∫
|x|dµ(x)

∣∣∣∣
≤K/M + ε+ ε = 3ε.

Since ε is arbitrary we get the convergence.
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