Solution Series 10

Q1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\left(Z_{n}\right)_{n \in \mathbb{N}}$ a sequence of random variables.
(a) Prove that if $Z_{n} \xrightarrow{\mathbb{P}} c \in \mathbb{R}$, then for all bounded and continuous functions f

$$
\mathbb{E}\left(f\left(Z_{n}\right)\right) \rightarrow f(c) .
$$

(b) Show that if $Z_{n} \rightarrow c \in \mathbb{R}$ in distribution, then $Z_{n} \xrightarrow{\mathbb{P}} c$.

Solution:

(a) Take $\epsilon>0$, we know by continuity of f that there exists $\delta>0$ so that for all $x \in$ $[c-\delta, c+\delta],|f(x)-f(c)| \leq \epsilon$. Then

$$
\begin{aligned}
\left|\mathbb{E}\left(f\left(Z_{n}\right)-f(c)\right)\right| & \leq \mathbb{E}\left(\left|f\left(Z_{n}\right)-f(c)\right|\right) \\
& \leq \mathbb{E}\left(\left|f\left(Z_{n}\right)-f(c)\right| \mathbf{1}_{\left\{\left|Z_{n}-c\right| \leq \delta\right\}}\right)+\mathbb{E}\left(\left|f\left(Z_{n}\right)-f(c)\right| \mathbf{1}_{\left\{\left|Z_{n}-c\right|>\delta\right\}}\right) \\
& \leq \epsilon+\|f\|_{\infty} \mathbb{P}\left(\left|Z_{n}-c\right|>\delta\right) \underset{n \rightarrow \infty}{ } \epsilon
\end{aligned}
$$

(b) Take $\epsilon>0$ and define

$$
f_{\epsilon}(x) \mapsto \min \left\{\frac{1}{\epsilon} d(x,[c-\epsilon, c+\epsilon]), 1\right\} .
$$

f_{ϵ} is clearly a continuous function. Note that $f_{\epsilon}(x)=0$ if $x \in[c-\epsilon, c+\epsilon]$ and $f(x)=1$ if $|x-c| \geq 2 \epsilon$. Then we have that:

$$
\mathbb{P}\left(\left|X_{n}-c\right| \geq 2 \epsilon\right) \leq f_{\epsilon}\left(X_{n}\right) \rightarrow f_{\epsilon}(c)=0
$$

Q2. Take the following probability space $(\Omega, \mathcal{A}, \mathbb{P})=\left([0,1], \mathcal{B}([0,1]),\left.\lambda\right|_{[0,1]}\right)$, where $\left.\lambda\right|_{[0,1]}$ is the Lebesgue measure over $[0,1]$. Let $X_{n}(\omega)=\mathbf{1}_{A_{n}}(\omega)$ a sequence of random variables with $A_{n} \in \mathcal{B}([0,1])$.
(a) Under which condition for $\left(A_{n}\right)_{n \in \mathbb{N}}$ we have that $X_{n} \xrightarrow{\mathbb{P}} 0$.
(b) Write the event $\left\{\omega: X_{n}(\omega) \rightarrow 0\right\}$ with help of the sets $\left(A_{n}\right)_{n \in \mathbb{N}}$.
(c) Find a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of events so that $X_{n} \xrightarrow{\mathbb{P}} 0$ but $\left\{\omega: X_{n}(\omega) \rightarrow 0\right\}=\emptyset$.

Solution:

(a) We know that for all $\epsilon \leq \frac{1}{2}$

$$
\mathbb{P}\left(\left|X_{n}\right| \leq \epsilon\right)=\mathbb{P}\left(\left|X_{n}\right|=0\right)=\mathbb{P}\left(A_{n}^{c}\right),
$$

so $X_{n} \xrightarrow{\mathbb{P}} 0$ iff $\mathbb{P}\left(A_{n}^{c}\right) \rightarrow 1$.
(b) Given that X_{n} takes only values in $\{0,1\}$ we know it converges if from a point onward it only takes the value 0 , so

$$
\left\{\omega: \lim X_{n}(\omega)=0\right\}=\bigcup_{k \in \mathbb{N}} \bigcap_{n \geq k} A_{n}^{c}=\liminf A_{n}^{c}
$$

(c) For $n \in \mathbb{N}$ define $r_{n}=\left\lfloor\log _{2}(n)\right\rfloor$ and define $k_{n}=n-2^{r_{n}}$. Take

$$
A_{n}=\left[\frac{k_{n}}{2^{r_{n}}}, \frac{k_{n}+1}{2^{r_{n}}}\right],
$$

note that $\mathbb{P}\left(A_{n}\right)=r_{n} \rightarrow 0$, so $X_{n} \xrightarrow{\mathbb{P}} 0$. Additionally note that for each r_{n} there are $2^{r_{n}+1}-2^{r_{n}}=2^{r_{n}}$ different k_{n} associated to it and also that:

$$
\mathbb{P}\left(\bigcup_{n: r_{n}=r} A_{n}\right)=2^{r_{n}} \frac{1}{2^{r_{n}}}=1
$$

so $\bigcup_{n: r_{n}=r} A_{n}=[0,1]$. Then we know that for each $r \in \mathbb{N}$ and for all $x \in[0,1]$ there exits $n \in \mathbb{N}$ so that $r_{n}=r$ and $x \in A_{n}$, so $X_{n}(x)$ is 1 infinitely many times. Thus, $\left\{\omega: X_{n}(\omega) \rightarrow 0\right\}=\emptyset$.

Q3. Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of random variables with

$$
\begin{aligned}
& \mathbb{E}\left(X_{i}\right)=\mu \forall i \\
& \operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty \quad \forall i \\
& \operatorname{Cov}\left(X_{i}, X_{j}\right)=R(|i-j|) \quad \forall i, j
\end{aligned}
$$

Define $S_{n}:=\sum_{i=1}^{n} X_{i}$.
(a) Prove that if $\lim _{k \rightarrow \infty} R(k)=0$ then $\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\mu$ in probability.
(b) Prove that if $\sum_{k \in \mathbb{N}}|R(k)|<\infty$ then $\lim _{n \rightarrow \infty} n \operatorname{Var}\left(\frac{S_{n}}{n}\right)$ exists.

Solution:

(a) Thanks to Chebyshev inequality

$$
P\left[\left|\frac{S_{n}}{n}-\mu\right| \geq \varepsilon\right] \leq \frac{1}{\varepsilon^{2}} \operatorname{Var}\left(\frac{S_{n}}{n}\right)
$$

it's enough to prove that $\operatorname{Var}\left(\frac{S_{n}}{n}\right) \rightarrow 0(n \rightarrow \infty)$.

Computing the variance we have:

$$
\begin{aligned}
\operatorname{Var}\left(\frac{S_{n}}{n}\right) & =\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}}\left(\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)\right) \\
& =\frac{1}{n^{2}}\left(n \sigma^{2}+2 \sum_{k=1}^{n-1}(n-k) R(k)\right) \\
& =\frac{1}{n}\left(\sigma^{2}+2 \sum_{k=1}^{n-1}\left(1-\frac{k}{n}\right) R(k)\right)
\end{aligned}
$$

Then it's enough to prove that:

$$
\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{k=1}^{n-1}\left(\frac{n-k}{n}\right) R(k)=0
$$

which is obtained by a similar proof of the convergence of Cesàro means.
(b) We just have to compute

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \operatorname{Var}\left(\frac{S_{n}}{n}\right) & =\lim _{n \rightarrow \infty}\left(\sigma^{2}+2 \sum_{k=1}^{n-1}\left(1-\frac{k}{n}\right) R(k)\right) \\
& =\sigma^{2}+2 \sum_{k=1}^{\infty} R(k)-2 \lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} \frac{k}{n} R(k) .
\end{aligned}
$$

Define:

$$
a_{n}(k):= \begin{cases}\frac{k}{n} R(k) & (k<n) \\ 0 & (k \geq n)\end{cases}
$$

it's clear that $a_{n}(k) \rightarrow 0(n \rightarrow \infty)$ for all k. Then we just have to use dominated convergence to prove that this part goes to 0 . Note that $\left|a_{n}(k)\right| \leq|R(k)|$ and $|R(k)|$ is absolutely convergente. So:

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} \frac{k}{n} R(k)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} a_{n}(k)=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n}(k)=\sum_{k=1}^{\infty} \lim _{n \rightarrow \infty} a_{n}(k)=0
$$

Then

$$
\lim _{n \rightarrow \infty} n \operatorname{Var}\left(\frac{S_{n}}{n}\right)=\sigma^{2}+2 \sum_{k=1}^{\infty} R(k)
$$

Q4. (a) Let μ_{n} and ν_{n} two sequence of probability measure on \mathbb{R}. and $\epsilon_{n} \in(0,1)$ with $\epsilon_{n} \rightarrow 0$. Prove that if $\mu_{n} \rightarrow \mu$ in distribution, then $\left(1-\epsilon_{n}\right) \mu_{n}+\epsilon_{n} \nu_{n} \rightarrow \mu$ in distribution.
(b) Construct with the help of a) a sequence μ_{n} so that $\mu_{n} \rightarrow \mu$ in distribution but $\lim _{n \rightarrow \infty} \int|x| d \mu_{n}(x) \neq \int|x| d \mu(x)$.
(c) Prove that if $\mu_{n} \rightarrow \mu$ in distribution and $\sup _{n} \int x^{2} d \mu_{n}(x)=K<\infty$ then

$$
\int|x| d \mu_{n}(x) \rightarrow \int|x| d \mu(x)
$$

Hint: For all M prove that

$$
\int \min \{|x|, M\} d \mu_{n}(x) \rightarrow \int \min \{|x|, M\} d \mu(x)
$$

and that

$$
0 \leq \int|x| d \mu_{n}(x)-\int \min \{|x|, M\} d \mu_{n}(x) \leq K / M
$$

Solution:

(a) Take $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuous and bounded function

$$
\begin{aligned}
\left|\int f d\left(\left(1-\epsilon_{n}\right) \mu_{n}+\epsilon_{n} \nu_{n}\right)-\int f d \mu\right| & \leq\left|\int f d \mu_{n}-\int f d \mu\right|+\epsilon_{n}\left|\int f d \nu_{n}-\int f d \mu_{n}\right| \\
& \leq\left|\int f d \mu_{n}-\int f d \mu\right|+2 \epsilon_{n}\|f\|_{\infty} \rightarrow 0
\end{aligned}
$$

(b) Take $\mu_{n}=\delta_{0}$, i.e. $\mu(A)=1_{\{0 \in A\}}$ and $\nu_{n}=\delta_{n}$. It's clear that $\mu_{n} \rightarrow \delta_{0}$ (it's a constant sequence), so $\left(1-\frac{1}{n}\right) \mu_{n}+\frac{1}{n} \nu_{n} \rightarrow \delta_{0}$, but:

$$
\int|x| d\left(\left(1-\frac{1}{n}\right) \mu_{n}+\frac{1}{n} \nu_{n}\right)(x)=\frac{1}{n} n=1 \neq 0=\int|x| d \delta_{0}(x) .
$$

(c) We prove first both claims in the Hint. We know that $\min \{|\cdot|, M\}$ is a bounded continuous function. So it's clear that

$$
\int \min \{|x|, M\} d \mu_{n}(x) \rightarrow \int \min \{|x|, M\} d \mu(x)
$$

and

$$
\begin{aligned}
& \int|x| d \mu_{n}(x)-\int \min \{|x|, M\} d \mu_{n}(x) \\
& =\int(|x|-M) \mathbf{1}_{|x| \geq M} d \mu_{n}(x) \\
& \leq \int|x| \mathbf{1}_{|x| \geq M} d \mu_{n}(x) \\
& \leq \sqrt{\int x^{2} d \mu_{n}(x) \int \mathbf{1}_{|x| \geq M} d \mu_{n}(x)} \\
& \leq \sqrt{K} \sqrt{\int \mathbf{1}_{|x|^{2} \geq M^{2}} d \mu_{n}(x)} \\
& \leq \sqrt{K} \sqrt{K / M^{2}} \\
& =K / M
\end{aligned}
$$

thanks to Cauchy-Schwarz inequality and Chebychev inequality. The above difference is clearly non-negative.
By the monotone convergence theorem

$$
\int \min \{|x|, M\} d \mu(x) \stackrel{M \rightarrow \infty}{\nearrow} \int|x| d \mu(x)
$$

To finish, take $\epsilon>0$, and M so that $K / M \leq \epsilon$, and that

$$
\left|\int \min \{|x|, M\} d \mu(x)-\int\right| x|d \mu(x)| \leq \epsilon
$$

Take n_{0} such that for all $n \geq n_{0}$,

$$
\left|\int \min \{|x|, M\} d \mu_{n}(x)-\int \min \{|x|, M\} d \mu(x)\right| \leq \epsilon .
$$

Finally,

$$
\begin{aligned}
& \left|\int\right| x\left|d \mu_{n}(x)-\int\right| x|d \mu(x)| \\
\leq & \left|\int\right| x\left|d \mu_{n}(x)-\int \min \{|x|, M\} d \mu_{n}(x)\right|+\left|\int \min \{|x|, M\} d \mu_{n}(x)-\int \min \{|x|, M\} d \mu(x)\right| \\
& +\left|\int \min \{|x|, M\} d \mu(x)-\int\right| x|d \mu(x)| \\
\leq & K / M+\epsilon+\epsilon=3 \epsilon .
\end{aligned}
$$

Since ϵ is arbitrary we get the convergence.

