Lecturer: Prof. Dr. Josef Teichmann
Coordinator: Vincenzo Ignazio

Exercise Series 10

Q1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\left(Z_{n}\right)_{n \in \mathbb{N}}$ a sequence of random variables.
(a) Prove that if $Z_{n} \xrightarrow{\mathbb{P}} c \in \mathbb{R}$, then for all bounded and continuous functions f

$$
\mathbb{E}\left(f\left(Z_{n}\right)\right) \rightarrow f(c) .
$$

(b) Show that if $Z_{n} \rightarrow c \in \mathbb{R}$ in distribution, then $Z_{n} \xrightarrow{\mathbb{P}} c$.

Q2. Take the following probability space $(\Omega, \mathcal{A}, \mathbb{P})=\left([0,1], \mathcal{B}([0,1]),\left.\lambda\right|_{[0,1]}\right)$, where $\left.\lambda\right|_{[0,1]}$ is the Lebesgue measure over $[0,1]$. Let $X_{n}(\omega)=\mathbf{1}_{A_{n}}(\omega)$ a sequence of random variables with $A_{n} \in \mathcal{B}([0,1])$.
(a) Under which condition for $\left(A_{n}\right)_{n \in \mathbb{N}}$ we have that $X_{n} \xrightarrow{\mathbb{P}} 0$.
(b) Write the event $\left\{\omega: X_{n}(\omega) \rightarrow 0\right\}$ with help of the sets $\left(A_{n}\right)_{n \in \mathbb{N}}$.
(c) Find a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of events so that $X_{n} \xrightarrow{\mathbb{P}} 0$ but $\left\{\omega: X_{n}(\omega) \rightarrow 0\right\}=\emptyset$.

Q3. Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of random variables with

$$
\begin{aligned}
& \mathbb{E}\left(X_{i}\right)=\mu \quad \forall i, \\
& \operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty \quad \forall i, \\
& \operatorname{Cov}\left(X_{i}, X_{j}\right)=R(|i-j|) \quad \forall i, j
\end{aligned}
$$

Define $S_{n}:=\sum_{i=1}^{n} X_{i}$.
(a) Prove that if $\lim _{k \rightarrow \infty} R(k)=0$ then $\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\mu$ in probability.
(b) Prove that if $\sum_{k \in \mathbb{N}}|R(k)|<\infty$ then $\lim _{n \rightarrow \infty} n \operatorname{Var}\left(\frac{S_{n}}{n}\right)$ exists.

Q4. (a) Let μ_{n} and ν_{n} two sequence of probability measure on \mathbb{R}. and $\epsilon_{n} \in(0,1)$ with $\epsilon_{n} \rightarrow 0$. Prove that if $\mu_{n} \rightarrow \mu$ in distribution, then $\left(1-\epsilon_{n}\right) \mu_{n}+\epsilon_{n} \nu_{n} \rightarrow \mu$ in distribution.
(b) Construct with the help of a) a sequence μ_{n} so that $\mu_{n} \rightarrow \mu$ in distribution but $\lim _{n \rightarrow \infty} \int|x| d \mu_{n}(x) \neq \int|x| d \mu(x)$.
(c) Prove that if $\mu_{n} \rightarrow \mu$ in distribution and $\sup _{n} \int x^{2} d \mu_{n}(x)=K<\infty$ then

$$
\int|x| d \mu_{n}(x) \rightarrow \int|x| d \mu(x)
$$

Hint: For all M prove that

$$
\int \min \{|x|, M\} d \mu_{n}(x) \rightarrow \int \min \{|x|, M\} d \mu(x)
$$

and that

$$
0 \leq \int|x| d \mu_{n}(x)-\int \min \{|x|, M\} d \mu_{n}(x) \leq K / M
$$

