Exercise Sheet 1

Norm, Trace, Discriminant and Rings of Integers

1. Show that $\mathbb{Z}[i]^{\times}=\{ \pm 1, \pm i\}$.
2. Let k be a field of characteristic $\neq 2$. Let $A:=k[x]$ for some transcendental x and let $K:=k(x)$ denote its fraction field. Let $L:=K[y] /\left(y^{2}-f\right)$ for some separable $f \in A$ with $\operatorname{deg} f>0$, and let B be the integral closure of A in L. Show that

$$
B=A \oplus A \cdot y
$$

3. Determine the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$ and its discriminant.
4. This is an example by Dedekind of a cubic number field K whose ring of integers is not generated by one element over \mathbb{Z}.
(a) Show that the polynomial $f:=X^{3}+X^{2}-2 X+8$ is irreducible over \mathbb{Q} and thus defines a cubic number field $K:=\mathbb{Q}(\theta)$ with $f(\theta)=0$.
(b) Show that the ring of integers of K is $\mathcal{O}_{K}=\mathbb{Z} \oplus \mathbb{Z} \cdot \theta \oplus \mathbb{Z} \cdot \beta$ for $\beta:=\frac{\theta+\theta^{2}}{2}$.
(c) Show that the kernel of the surjection $\mathbb{Z}[X, Y] \rightarrow \mathcal{O}_{K}$ defined by $g(X, Y) \mapsto$ $g(\theta, \beta)$ is the ideal

$$
\left(X^{2}-2 Y+X, X Y-X+4, Y^{2}-Y+2 X+2\right)
$$

(d) Deduce that $\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong\left(\mathbb{F}_{2}\right)^{3}$.
(e) Show that $\left(\mathbb{F}_{2}\right)^{3}$ is not generated by one element over \mathbb{F}_{2}.
(f) Deduce that there exists no $\xi \in \mathcal{O}_{K}$ such that $\mathcal{O}_{K}=\mathbb{Z}[\xi]$.
5. Two field extensions L / K and L^{\prime} / K are called linearly disjoint over K if $L \otimes_{K} L^{\prime}$ is a field. Let $L:=\mathbb{Q}(\sqrt[3]{3})$ and let $L^{\prime}:=\mathbb{Q}(\zeta \sqrt[3]{3})$, where ζ is a primitive 3rd root of unity. Show that $L \cap L^{\prime}=\mathbb{Q}$, but L and L^{\prime} are not linearly disjoint over \mathbb{Q}.
6. Let L / K be an inseparable finite field extension. Then $\operatorname{Tr}_{L / K}$ is identically zero.

