Exercise Sheet 1

NORM, TRACE, DISCRIMINANT AND RINGS OF INTEGERS

- 1. Show that $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$
- 2. Let k be a field of characteristic $\neq 2$. Let A := k[x] for some transcendental x and let K := k(x) denote its fraction field. Let $L := K[y]/(y^2 - f)$ for some separable $f \in A$ with deg f > 0, and let B be the integral closure of A in L. Show that

$$B = A \oplus A \cdot y.$$

- 3. Determine the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$ and its discriminant.
- 4. This is an example by Dedekind of a cubic number field K whose ring of integers is not generated by one element over \mathbb{Z} .
 - (a) Show that the polynomial $f := X^3 + X^2 2X + 8$ is irreducible over \mathbb{Q} and thus defines a cubic number field $K := \mathbb{Q}(\theta)$ with $f(\theta) = 0$.
 - (b) Show that the ring of integers of K is $\mathcal{O}_K = \mathbb{Z} \oplus \mathbb{Z} \cdot \theta \oplus \mathbb{Z} \cdot \beta$ for $\beta := \frac{\theta + \theta^2}{2}$.
 - (c) Show that the kernel of the surjection $\mathbb{Z}[X,Y] \to \mathcal{O}_K$ defined by $g(X,Y) \mapsto g(\theta,\beta)$ is the ideal

$$(X^2 - 2Y + X, XY - X + 4, Y^2 - Y + 2X + 2).$$

- (d) Deduce that $\mathcal{O}_K/2\mathcal{O}_K \cong (\mathbb{F}_2)^3$.
- (e) Show that $(\mathbb{F}_2)^3$ is not generated by one element over \mathbb{F}_2 .
- (f) Deduce that there exists no $\xi \in \mathcal{O}_K$ such that $\mathcal{O}_K = \mathbb{Z}[\xi]$.
- 5. Two field extensions L/K and L'/K are called *linearly disjoint over* K if $L \otimes_K L'$ is a field. Let $L := \mathbb{Q}(\sqrt[3]{3})$ and let $L' := \mathbb{Q}(\zeta\sqrt[3]{3})$, where ζ is a primitive 3rd root of unity. Show that $L \cap L' = \mathbb{Q}$, but L and L' are not linearly disjoint over \mathbb{Q} .
- 6. Let L/K be an inseparable finite field extension. Then $\text{Tr}_{L/K}$ is identically zero.