Algebraic Number Theory

Exercise Sheet 2

DEDEKIND RINGS AND LATTICES

- 1. Consider the number field $K := \mathbb{Q}(\sqrt{-5})$ and its ring of integers $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$.
 - (a) Show that (3) = $\mathfrak{p}\mathfrak{p}'$ with prime ideals $\mathfrak{p} := (3, 1+\sqrt{-5})$ and $\mathfrak{p}' := (3, 1-\sqrt{-5})$.
 - (b) Determine the structure of the ring $\mathcal{O}_K/(3)$.
 - (c) Determine the inverse of \mathfrak{p} as a fractional ideal.
 - (d) Which powers of the ideal p are principal?
 - (e) Compute the factorization of (2) into prime ideals.
 - (f) Compute the factorization of (5) into prime ideals.
 - (g) Compute the factorization of (7) into prime ideals.
- 2. Let A be a Dedekind domain.
 - (a) Show that for any non-zero ideal $\mathfrak{a} \subseteq A$, any ideal of A/\mathfrak{a} is principal.
 - (b) Show that every ideal of A is generated by two elements.
- 3. Show that a subgroup Γ of a finite-dimensional \mathbb{R} -vector space V is a complete lattice if and only if Γ is discrete and V/Γ is compact.
- 4. (Minkowski's theorem on linear forms) Let

$$L_i(x_1, ..., x_n) = \sum_{j=1}^n a_{ij} x_j, \qquad i = 1, ..., n,$$

be real linear forms such that $det(a_{ij}) \neq 0$, and let c_1, \ldots, c_n be positive real numbers such that $c_1 \cdots c_n > |det(a_{ij})|$. Show that there exist integers $m_1, \ldots, m_n \in \mathbb{Z}$, not all zero, such that for all $i \in \{1, \ldots, n\}$

$$|L_i(m_1,\ldots,m_n)| < c_i.$$

Hint: Use Minkowski's lattice point theorem.

*5. Consider a line $\ell := \mathbb{R} \cdot (1, \alpha)$ in the plane \mathbb{R}^2 with an irrational slope $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Show that for any $\varepsilon > 0$, there are infinitely many lattice points $P \in \mathbb{Z}^2$ of distance $d(P, \ell) < \varepsilon$.