Exercise Sheet 3

LATTICES AND MINKOWSKI THEORY

*1. Show Minkowski's second theorem about successive minima: Let Γ be a complete lattice in a euclidean vector space (V, \langle , \rangle) of finite dimension n. The successive minima $\lambda_1, \ldots, \lambda_n$ of Γ are defined iteratively by choosing for any $1 \leq i \leq n$ an element $\gamma_i \in \Gamma \setminus \bigoplus_{j=1}^{i-1} \mathbb{R}\gamma_j$ of minimal length $\lambda_i := \|\gamma\|$. Then

$$\frac{2^n}{n!}\operatorname{vol}(\mathbb{R}^n/\Gamma) \leqslant \lambda_1 \cdots \lambda_n \cdot \operatorname{vol}(B) \leqslant 2^n \operatorname{vol}(\mathbb{R}^n/\Gamma),$$

where B is the closed ball of radius 1.

- 2. Show Lagrange's four square theorem: Every nonnegative integer n can be written as the sum of four squares.
 - (a) Show that if m and n are sums of four squares, then so is mn. *Hint:* Use the reduced norm on the ring of quaternions $\mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}k$.
 - (b) Reduce the theorem to the case that n is a prime number p.
 - (c) Find integers α , β such that $\alpha^2 + \beta^2 \equiv -1 \mod p$. *Hint:* Consider the intersection of the sets

$$S := \left\{ \alpha^2 \mod p \mid 0 \leqslant \alpha < \frac{p}{2} \right\} \quad \text{and} \quad S' := \left\{ -1 - \beta^2 \mod p \mid 0 \leqslant \beta < \frac{p}{2} \right\}$$

(d) For any such α , β show that

$$\Gamma := \left\{ a = (a_1, \dots, a_4) \in \mathbb{Z}^4 \mid a_1 \equiv \alpha a_3 + \beta a_4 \operatorname{mod}(p) \text{ and } a_2 \equiv \beta a_3 - \alpha a_4 \operatorname{mod}(p) \right\}$$

contains a nonzero point a in the open ball of radius $\sqrt{2p}$ in \mathbb{R}^4 .

- (e) Show that $||a||^2 = p$ and conclude.
- 3. (a) Show that the number fields $\mathbb{Q}(\sqrt{11})$ and $\mathbb{Q}(\sqrt{-11})$ have class number 1.
 - (b) Show that the class group of $\mathbb{Q}(\sqrt{-14})$ is cyclic of order 4.
 - (c) Show that $f := X^3 + X + 1 \in \mathbb{Q}[X]$ is irreducible and that the cubic number field $\mathbb{Q}(\theta)$ with $f(\theta) = 0$ has class number 1.

- 4. (a) Let K be a number field. Let \mathfrak{a} be a fractional ideal of \mathcal{O}_K and $m \ge 1$ an integer such that $\mathfrak{a}^m = (\alpha)$. Let L/K be a finite extension containing an element $\sqrt[m]{\alpha}$ such that $\sqrt[m]{\alpha}^m = \alpha$. Show that $\mathfrak{a}\mathcal{O}_L = \sqrt[m]{\alpha}\mathcal{O}_L$.
 - (b) Show that there is a finite field extension L/K such that for every fractional ideal \mathfrak{a} of \mathcal{O}_K the ideal $\mathfrak{a}\mathcal{O}_L$ is principal.
- 5. Let p be a prime with $p \equiv 3 \mod 4$. It is known that the class number of $K := \mathbb{Q}(\sqrt{p})$ is odd. Use this fact to prove that there exist $a, b \in \mathbb{Z}$ such that

$$|a^2 - pb^2| = 2$$

Hint: Show that $(2, 1 + \sqrt{p}) = (2, 1 + \sqrt{p})^{|\operatorname{Cl}(\mathcal{O}_K)|} \cdot \mathfrak{a}$ for a principal ideal \mathfrak{a} .