Exercise Sheet 3

Lattices and Minkowski Theory

*1. Show Minkowski's second theorem about successive minima: Let Γ be a complete lattice in a euclidean vector space $(V,\langle\rangle$,$) of finite dimension n$. The successive minima $\lambda_{1}, \ldots, \lambda_{n}$ of Γ are defined iteratively by choosing for any $1 \leqslant i \leqslant n$ an element $\gamma_{i} \in \Gamma \backslash \bigoplus_{j=1}^{i-1} \mathbb{R} \gamma_{j}$ of minimal length $\lambda_{i}:=\|\gamma\|$. Then

$$
\frac{2^{n}}{n!} \operatorname{vol}\left(\mathbb{R}^{n} / \Gamma\right) \leqslant \lambda_{1} \cdots \lambda_{n} \cdot \operatorname{vol}(B) \leqslant 2^{n} \operatorname{vol}\left(\mathbb{R}^{n} / \Gamma\right)
$$

where B is the closed ball of radius 1 .
2. Show Lagrange's four square theorem: Every nonnegative integer n can be written as the sum of four squares.
(a) Show that if m and n are sums of four squares, then so is $m n$.

Hint: Use the reduced norm on the ring of quaternions $\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k$.
(b) Reduce the theorem to the case that n is a prime number p.
(c) Find integers α, β such that $\alpha^{2}+\beta^{2} \equiv-1 \bmod p$.

Hint: Consider the intersection of the sets

$$
S:=\left\{\alpha^{2} \bmod p \left\lvert\, 0 \leqslant \alpha<\frac{p}{2}\right.\right\} \quad \text { and } \quad S^{\prime}:=\left\{-1-\beta^{2} \bmod p \left\lvert\, 0 \leqslant \beta<\frac{p}{2}\right.\right\} .
$$

(d) For any such α, β show that
$\Gamma:=\left\{a=\left(a_{1}, \ldots, a_{4}\right) \in \mathbb{Z}^{4} \mid a_{1} \equiv \alpha a_{3}+\beta a_{4} \bmod (p)\right.$ and $\left.a_{2} \equiv \beta a_{3}-\alpha a_{4} \bmod (p)\right\}$ contains a nonzero point a in the open ball of radius $\sqrt{2 p}$ in \mathbb{R}^{4}.
(e) Show that $\|a\|^{2}=p$ and conclude.
3. (a) Show that the number fields $\mathbb{Q}(\sqrt{11})$ and $\mathbb{Q}(\sqrt{-11})$ have class number 1 .
(b) Show that the class group of $\mathbb{Q}(\sqrt{-14})$) is cyclic of order 4 .
(c) Show that $f:=X^{3}+X+1 \in \mathbb{Q}[X]$ is irreducible and that the cubic number field $\mathbb{Q}(\theta)$ with $f(\theta)=0$ has class number 1 .
4. (a) Let K be a number field. Let \mathfrak{a} be a fractional ideal of \mathcal{O}_{K} and $m \geqslant 1$ an integer such that $\mathfrak{a}^{m}=(\alpha)$. Let L / K be a finite extension containing an element $\sqrt[m]{\alpha}$ such that $\sqrt[m]{\alpha}{ }^{m}=\alpha$. Show that $\mathfrak{a} \mathcal{O}_{L}=\sqrt[m]{\alpha} \mathcal{O}_{L}$.
(b) Show that there is a finite field extension L / K such that for every fractional ideal \mathfrak{a} of \mathcal{O}_{K} the ideal $\mathfrak{a} \mathcal{O}_{L}$ is principal.
5. Let p be a prime with $p \equiv 3 \bmod 4$. It is known that the class number of $K:=$ $\mathbb{Q}(\sqrt{p})$ is odd. Use this fact to prove that there exist $a, b \in \mathbb{Z}$ such that

$$
\left|a^{2}-p b^{2}\right|=2 .
$$

Hint: Show that $(2,1+\sqrt{p})=(2,1+\sqrt{p})^{\left|\mathrm{Cl}\left(\mathcal{O}_{K}\right)\right|} \cdot \mathfrak{a}$ for a principal ideal \mathfrak{a}.

