LATTICES, UNITS

Exercise Sheet 4

- 1. Suppose that the equation $y^2 = x^5 2$ has a solution with $x, y \in \mathbb{Z}$.
 - (a) Write down the ring of integers and the class number of $K := \mathbb{Q}(\sqrt{-2})$.
 - (b) Show that y is odd and that the two ideals $(y \pm \sqrt{-2})$ of \mathcal{O}_K are coprime.
 - (c) Prove that $y + \sqrt{-2}$ is a 5-th power in \mathcal{O}_K .
 - (d) Deduce a contradiction, proving that the equation has no integer solution.
- 2. (a) A *cone* in a real vector space is a subset that is invariant under multiplication by $\mathbb{R}^{>0}$. Let *C* be a non-empty open convex cone in a finite dimensional real vector space *V*. Prove that for any complete lattice $\Gamma \subset V$ there exists a point in $\Gamma \cap C$.
 - (b) Let K be a totally real number field, i.e., one with $\Sigma := \operatorname{Hom}(K, \mathbb{C}) = \operatorname{Hom}(K, \mathbb{R})$. Let T be any nonempty proper subset of Σ . Show that there exists a unit $\varepsilon \in \mathcal{O}_K^{\times}$ such that $\sigma(\varepsilon) > 1$ for all $\sigma \in T$ and $0 < \sigma(\varepsilon) < 1$ for all $\sigma \in \Sigma \setminus T$.
- *3. (a) Let M be a bounded subset of a finite dimensional real vector space V. Construct another bounded subset $N \subset V$ such that for any complete lattice $\Gamma \subset V$ with $V = \Gamma + M$, the subset $\Gamma \cap N$ generates Γ .
 - (b) Deduce that, in principle, for every number field K one can effectively find generators of \mathcal{O}_K^{\times} .
- 4. (a) For any number field K, any subring $\mathcal{O} \subset \mathcal{O}_K$ of finite index is called an order in \mathcal{O}_K . For any such order prove that \mathcal{O}^{\times} is a subgroup of finite index in \mathcal{O}_K^{\times} .
 - (b) Consider a squarefree integer d > 1 with $d \equiv 1 \mod (4)$, so that $K := \mathbb{Q}(\sqrt{d})$ has the ring of integers $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$. Explain the precise relation between $\mathbb{Z}[\sqrt{d}]^{\times}$ and \mathcal{O}_K^{\times} .
- 5. Show that the equation $a^2 b^2 d = -1$ has infinitely many solutions $(a, b) \in \mathbb{Z}^2$ for d = 2, but none for d = 3. Explain the answer with algebraic number theory.