Exercise Sheet 4

Lattices, Units

1. Suppose that the equation $y^{2}=x^{5}-2$ has a solution with $x, y \in \mathbb{Z}$.
(a) Write down the ring of integers and the class number of $K:=\mathbb{Q}(\sqrt{-2})$.
(b) Show that y is odd and that the two ideals $(y \pm \sqrt{-2})$ of \mathcal{O}_{K} are coprime.
(c) Prove that $y+\sqrt{-2}$ is a 5 -th power in \mathcal{O}_{K}.
(d) Deduce a contradiction, proving that the equation has no integer solution.
2. (a) A cone in a real vector space is a subset that is invariant under multiplication by $\mathbb{R}^{>0}$. Let C be a non-empty open convex cone in a finite dimensional real vector space V. Prove that for any complete lattice $\Gamma \subset V$ there exists a point in $\Gamma \cap C$.
(b) Let K be a totally real number field, i.e., one with $\Sigma:=\operatorname{Hom}(K, \mathbb{C})=$ $\operatorname{Hom}(K, \mathbb{R})$. Let T be any nonempty proper subset of Σ. Show that there exists a unit $\varepsilon \in \mathcal{O}_{K}^{\times}$such that $\sigma(\varepsilon)>1$ for all $\sigma \in T$ and $0<\sigma(\varepsilon)<1$ for all $\sigma \in \Sigma \backslash T$.
*3. (a) Let M be a bounded subset of a finite dimensional real vector space V. Construct another bounded subset $N \subset V$ such that for any complete lattice $\Gamma \subset V$ with $V=\Gamma+M$, the subset $\Gamma \cap N$ generates Γ.
(b) Deduce that, in principle, for every number field K one can effectively find generators of \mathcal{O}_{K}^{\times}.
3. (a) For any number field K, any subring $\mathcal{O} \subset \mathcal{O}_{K}$ of finite index is called an order in \mathcal{O}_{K}. For any such order prove that \mathcal{O}^{\times}is a subgroup of finite index in \mathcal{O}_{K}^{\times}.
(b) Consider a squarefree integer $d>1$ with $d \equiv 1 \bmod (4)$, so that $K:=\mathbb{Q}(\sqrt{d})$ has the ring of integers $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$. Explain the precise relation between $\mathbb{Z}[\sqrt{d}]^{\times}$and \mathcal{O}_{K}^{\times}.
4. Show that the equation $a^{2}-b^{2} d=-1$ has infinitely many solutions $(a, b) \in \mathbb{Z}^{2}$ for $d=2$, but none for $d=3$. Explain the answer with algebraic number theory.
