Algebraic Number Theory

Exercise Sheet 5

UNITS, DECOMPOSITION OF PRIME IDEALS

- 1. (a) Determine the ring of integers of $K := \mathbb{Q}(\sqrt{5}, i)$.
 - (b) Determine \mathcal{O}_F^{\times} for the subfield $F := \mathbb{Q}(\sqrt{5})$.
 - (c) Find a fundamental unit of \mathcal{O}_K^{\times} .
 - (d) Show that $|\mu(K)| = 4$ and write down \mathcal{O}_K^{\times} .
- 2. (a) Let K be a cubic number field with exactly one real embedding. We identify K with its image. Show that for any unit $u \in \mathcal{O}_K^{\times}$ with u > 1 we have

$$|\operatorname{disc}(\mathcal{O}_K)| \leq 3\left(u^2 + \frac{2}{u}\right)\left(u^4 + \frac{2}{u^2}\right).$$

Hint: Use Hadamard's inequality: For any complex $n \times n$ -matrix M with columns v_1, \ldots, v_n , we have $|\det(M)| \leq \prod_{i=1}^n ||v_i||$.

- (b) Show that a fundamental unit of \mathcal{O}_K^{\times} for the number field $K := \mathbb{Q}(\sqrt[3]{2})$ is $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- 3. Using continued fractions:
 - (a) Compute a fundamental unit of \mathcal{O}_K^{\times} for $K := \mathbb{Q}(\sqrt{318})$.
 - (b) Find the smallest positive integer solution of the equation $x^2 61y^2 = 1$.
- 4. Let K be a number field and let S be a finite set of prime ideals of \mathcal{O}_K . We define the ring of S-integers in K to be

$$\mathcal{O}_{K,S} := \bigcap_{\mathfrak{p} \notin S} \mathcal{O}_{K,\mathfrak{p}} = \big\{ \alpha \in K \mid \forall \mathfrak{p} \notin S : \operatorname{ord}_{\mathfrak{p}}(\alpha) \ge 0 \big\}.$$

The group $\mathcal{O}_{K,S}^{\times}$ is called the group of *S*-units in *K*.

- (a) Show that the torsion subgroup of $\mathcal{O}_{K,S}^{\times}$ is $\mu(K)$.
- (b) Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ be the distinct elements of S. Show that the homomorphism

 $\varphi \colon \mathcal{O}_{K,S}^{\times} \to \mathbb{Z}^t, \ \alpha \mapsto (\operatorname{ord}_{\mathfrak{p}_i}(\alpha))_i$

has kernel \mathcal{O}_K^{\times} and that its image has rank t.

- (c) Deduce that $\mathcal{O}_{K,S}^{\times} \cong \mu(K) \times \mathbb{Z}^{r+s+|S|-1}$.
- 5. In the number field $K := \mathbb{Q}(\sqrt[3]{2})$, what are the possible decompositions of $p\mathcal{O}_K$ for rational primes p?