Exercise Sheet 5

Units, Decomposition Of Prime Ideals

1. (a) Determine the ring of integers of $K:=\mathbb{Q}(\sqrt{5}, i)$.
(b) Determine \mathcal{O}_{F}^{\times}for the subfield $F:=\mathbb{Q}(\sqrt{5})$.
(c) Find a fundamental unit of \mathcal{O}_{K}^{\times}.
(d) Show that $|\mu(K)|=4$ and write down \mathcal{O}_{K}^{\times}.
2. (a) Let K be a cubic number field with exactly one real embedding. We identify K with its image. Show that for any unit $u \in \mathcal{O}_{K}^{\times}$with $u>1$ we have

$$
\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right| \leqslant 3\left(u^{2}+\frac{2}{u}\right)\left(u^{4}+\frac{2}{u^{2}}\right) .
$$

Hint: Use Hadamard's inequality: For any complex $n \times n$-matrix M with columns v_{1}, \ldots, v_{n}, we have $|\operatorname{det}(M)| \leqslant \prod_{i=1}^{n}\left\|v_{i}\right\|$.
(b) Show that a fundamental unit of \mathcal{O}_{K}^{\times}for the number field $K:=\mathbb{Q}(\sqrt[3]{2})$ is $1+\sqrt[3]{2}+\sqrt[3]{4}$
3. Using continued fractions:
(a) Compute a fundamental unit of \mathcal{O}_{K}^{\times}for $K:=\mathbb{Q}(\sqrt{318})$.
(b) Find the smallest positive integer solution of the equation $x^{2}-61 y^{2}=1$.
4. Let K be a number field and let S be a finite set of prime ideals of \mathcal{O}_{K}. We define the ring of S-integers in K to be

$$
\mathcal{O}_{K, S}:=\bigcap_{\mathfrak{p} \notin S} \mathcal{O}_{K, \mathfrak{p}}=\left\{\alpha \in K \mid \forall \mathfrak{p} \notin S: \operatorname{ord}_{\mathfrak{p}}(\alpha) \geqslant 0\right\} .
$$

The group $\mathcal{O}_{K, S}^{\times}$is called the group of S-units in K.
(a) Show that the torsion subgroup of $\mathcal{O}_{K, S}^{\times}$is $\mu(K)$.
(b) Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$ be the distinct elements of S. Show that the homomorphism

$$
\varphi: \mathcal{O}_{K, S}^{\times} \rightarrow \mathbb{Z}^{t}, \alpha \mapsto\left(\operatorname{ord}_{\mathfrak{p}_{i}}(\alpha)\right)_{i}
$$

has kernel \mathcal{O}_{K}^{\times}and that its image has rank t.
(c) Deduce that $\mathcal{O}_{K, S}^{\times} \cong \mu(K) \times \mathbb{Z}^{r+s+|S|-1}$.
5. In the number field $K:=\mathbb{Q}(\sqrt[3]{2})$, what are the possible decompositions of $p \mathcal{O}_{K}$ for rational primes p ?

