Exercise Sheet 7

DIFFERENT AND DISCRIMINANT, CYCLOTOMIC FIELDS

- 1. (a) Prove that any Dedekind ring with only finitely many maximal ideals is a principal ideal domain.
 - (b) Let A be a discrete valuation ring and B its integral closure in a finite separable field extension of Quot(A). Deduce from (a) that B is a principal ideal domain.
- 2. Let $K := \mathbb{Q}(\alpha)$, where $\alpha := \sqrt[3]{539}$.
 - (a) Using exercise 3 of sheet 6, show that (7) and (11) are totally ramified in \mathcal{O}_K . Let \mathfrak{p}_7 and \mathfrak{p}_{11} denote the prime ideals above (7) and (11), respectively.
 - (b) Using the discriminant, show that $\mathcal{O}_K = \alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$, where $\beta := \frac{77}{\alpha}$ and $\gamma := \frac{1+2\alpha+\beta}{3}$, and that $\operatorname{disc}(\mathcal{O}_K) = -3 \cdot 7^2 \cdot 11^2$.
 - (c) Show that $3\mathcal{O}_K = \mathfrak{p}_3^2 \mathfrak{p}_3'$ for distinct prime ideals \mathfrak{p}_3 and \mathfrak{p}_3' .
 - (d) Show that the different of \mathcal{O}_K/\mathbb{Z} is $\mathfrak{p}_3\mathfrak{p}_7^2\mathfrak{p}_{11}^2$.
 - *(e) Using the norm, show that $\operatorname{diff}_{\mathcal{O}_K/\mathbb{Z}}$ is not principal and conclude that \mathcal{O}_K is not generated by one element over \mathbb{Z} .
- 3. Let K be a number field, let m be a positive integer, let $G_m(K) := \{x^m \mid x \in K^{\times}\}$ and let $L_m(K)$ be the group of elements $x \in K^{\times}$ such that in the prime factorization of (x), all exponents are multiples of m.
 - (a) Prove that for every $x \in L_m(K)$, there exists a unique fractional ideal \mathfrak{a}_x such that $(x) = \mathfrak{a}_x^m$.
 - (b) Define $S_m(K) := L_m(K)/G_m(K)$ and $\operatorname{Cl}(\mathcal{O}_K)[m] := \{c \in \operatorname{Cl}(\mathcal{O}_K) \mid c^m = 1\}$ and show that the map

$$f: S_m(K) \to \operatorname{Cl}(\mathcal{O}_K)[m]$$
$$x \mapsto [\mathfrak{a}_x]$$

is a well-defined group homomorphism.

- (c) Show that f is surjective.
- (d) Find the kernel of f.

*4. (*Hilbert's Theorem 90*) Let L/K be a finite Galois extension of fields whose Galois group is cyclic and generated by σ . Show that for any element $x \in L^{\times}$ with $\operatorname{Nm}_{L/K}(x) = 1$ there exists an element $y \in L^{\times}$ with $x = \sigma(y)/y$.

Hint: Set n := [L/K] and consider the map

$$h: L \longrightarrow L, \quad z \mapsto h(z) := \sum_{i=0}^{n-1} \sigma^i(z) \cdot \prod_{i < j < n} \sigma^j(x).$$

- *5. Set $d := p_1 \cdots p_r$ for prime numbers $2 = p_1 < p_2 < \ldots < p_r$ and consider the imaginary quadratic number field $K := \mathbb{Q}(\sqrt{-d})$. For each *i* write $p_i \mathcal{O}_K = \mathfrak{p}_i^2$. Show that the subgroup $H := \{\xi \in \operatorname{Cl}(\mathcal{O}_K) \mid \xi^2 = 1\}$ has order 2^{r-1} and is generated by the ideal classes $[\mathfrak{p}_i]$ with the single relation $[\mathfrak{p}_1] \cdots [\mathfrak{p}_r] = 1$.
 - 6. Show that for any root of unity $\zeta \in \mathbb{C}$ whose order is not a prime power, the element 1ζ is a unit in $\mathcal{O}_{\mathbb{Q}(\zeta)}$.