Exercise Sheet 7

Different and Discriminant, Cyclotomic Fields

1. (a) Prove that any Dedekind ring with only finitely many maximal ideals is a principal ideal domain.
(b) Let A be a discrete valuation ring and B its integral closure in a finite separable field extension of $\operatorname{Quot}(A)$. Deduce from (a) that B is a principal ideal domain.
2. Let $K:=\mathbb{Q}(\alpha)$, where $\alpha:=\sqrt[3]{539}$.
(a) Using exercise 3 of sheet 6 , show that (7) and (11) are totally ramified in \mathcal{O}_{K}. Let \mathfrak{p}_{7} and \mathfrak{p}_{11} denote the prime ideals above (7) and (11), respectively.
(b) Using the discriminant, show that $\mathcal{O}_{K}=\alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$, where $\beta:=\frac{77}{\alpha}$ and $\gamma:=\frac{1+2 \alpha+\beta}{3}$, and that $\operatorname{disc}\left(\mathcal{O}_{K}\right)=-3 \cdot 7^{2} \cdot 11^{2}$.
(c) Show that $3 \mathcal{O}_{K}=\mathfrak{p}_{3}^{2} \mathfrak{p}_{3}^{\prime}$ for distinct prime ideals \mathfrak{p}_{3} and $\mathfrak{p}_{3}^{\prime}$.
(d) Show that the different of $\mathcal{O}_{K} / \mathbb{Z}$ is $\mathfrak{p}_{3} \mathfrak{p}_{7}^{2} \mathfrak{p}_{11}^{2}$.
*(e) Using the norm, show that diff $\mathcal{O}_{K} / \mathbb{Z}$ is not principal and conclude that \mathcal{O}_{K} is not generated by one element over \mathbb{Z}.
3. Let K be a number field, let m be a positive integer, let $G_{m}(K):=\left\{x^{m} \mid x \in K^{\times}\right\}$ and let $L_{m}(K)$ be the group of elements $x \in K^{\times}$such that in the prime factorization of (x), all exponents are multiples of m.
(a) Prove that for every $x \in L_{m}(K)$, there exists a unique fractional ideal \mathfrak{a}_{x} such that $(x)=\mathfrak{a}_{x}^{m}$.
(b) Define $S_{m}(K):=L_{m}(K) / G_{m}(K)$ and $\operatorname{Cl}\left(\mathcal{O}_{K}\right)[m]:=\left\{c \in \operatorname{Cl}\left(\mathcal{O}_{K}\right) \mid c^{m}=1\right\}$ and show that the map

$$
\begin{aligned}
f: S_{m}(K) & \rightarrow \mathrm{Cl}\left(\mathcal{O}_{K}\right)[m] \\
x & \mapsto\left[\mathfrak{a}_{x}\right]
\end{aligned}
$$

is a well-defined group homomorphism.
(c) Show that f is surjective.
(d) Find the kernel of f.
*4. (Hilbert's Theorem 90) Let L / K be a finite Galois extension of fields whose Galois group is cyclic and generated by σ. Show that for any element $x \in L^{\times}$with $\mathrm{Nm}_{L / K}(x)=1$ there exists an element $y \in L^{\times}$with $x=\sigma(y) / y$.
Hint: Set $n:=[L / K]$ and consider the map

$$
h: L \longrightarrow L, \quad z \mapsto h(z):=\sum_{i=0}^{n-1} \sigma^{i}(z) \cdot \prod_{i<j<n} \sigma^{j}(x) .
$$

*5. Set $d:=p_{1} \cdots p_{r}$ for prime numbers $2=p_{1}<p_{2}<\ldots<p_{r}$ and consider the imaginary quadratic number field $K:=\mathbb{Q}(\sqrt{-d})$. For each i write $p_{i} \mathcal{O}_{K}=\mathfrak{p}_{i}^{2}$. Show that the subgroup $H:=\left\{\xi \in \operatorname{Cl}\left(\mathcal{O}_{K}\right) \mid \xi^{2}=1\right\}$ has order 2^{r-1} and is generated by the ideal classes $\left[\mathfrak{p}_{i}\right]$ with the single relation $\left[\mathfrak{p}_{1}\right] \cdots\left[\mathfrak{p}_{r}\right]=1$.
6. Show that for any root of unity $\zeta \in \mathbb{C}$ whose order is not a prime power, the element $1-\zeta$ is a unit in $\mathcal{O}_{\mathbb{Q}(\zeta)}$.

