D-MATH
Prof. Richard Pink

Exercise Sheet 8

Cyclotomic Fields, Legendre Symbol

1. The Möbius function $\mu: \mathbb{Z} \geqslant 1 \rightarrow \mathbb{Z}$ is defined by

$$
\mu(n):= \begin{cases}(-1)^{k} & \text { if } n \text { is the product of } k \geqslant 0 \text { distinct primes, } \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that for any integer $n \geqslant 1$ we have

$$
\sum_{d \mid n} \mu\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

(b) Möbius inversion: Let $(G,+)$ be an abelian group and let f and g be arbitrary functions $\mathbb{Z}^{\geqslant 1} \rightarrow G$. Use (a) to show that

$$
\forall n \in \mathbb{Z}^{\geqslant 1}: g(n)=\sum_{d \mid n} f(d)
$$

if and only if

$$
\forall n \in \mathbb{Z}^{\geqslant 1}: f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d) .
$$

(c) Let $n \in \mathbb{Z}^{\geqslant 1}$ and let $\zeta \in \mathbb{C}$ be an $n^{\text {th }}$ primitive root of unit. We define the $n^{\text {th }}$ cyclotomic polynomial as

$$
\Phi_{n}(X):=\prod_{d \in(\mathbb{Z} / n \mathbb{Z})^{\times}}\left(X-\zeta^{d}\right)
$$

Use (b) to show that

$$
\Phi_{n}(X)=\prod_{d \mid n}\left(X^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}
$$

(d) Deduce that Φ_{n} has coefficients in \mathbb{Z} and is irreducible in $\mathbb{Q}[X]$.
(e) Euler's phi function: Deduce that

$$
\varphi(n):=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) d
$$

2. Determine the possibilities for the group $\mu(K)$ of roots of unity in K for all number fields K of degree 4 over \mathbb{Q}.
3. Prove that for any odd prime number p the following are equivalent:
(a) $p \equiv 1 \bmod (4)$.
(b) p is totally split in $\mathbb{Z}[i]$.
(c) $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$.
4. Prove that every quadratic number field can be embedded in a cyclotomic field.
5. Prove the third case of Gauss's reciprocity law, i.e., that for any odd prime p

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}
$$

Hint: Use that $(1+i)^{2}=2 i$ to evaluate $(1+i)^{p}$ and prove that

$$
\left(\frac{2}{p}\right)(1+i) i^{\frac{p-1}{2}} \equiv 1+i(-1)^{\frac{p-1}{2}} \bmod (p)
$$

6. Calculate the following Legendre symbols:
(a) Calculate $\left(\frac{3}{p}\right)$ for any odd prime p.
(b) Calculate $\left(\frac{-22}{71}\right)$.
