Exercise Sheet 8

Cyclotomic Fields, Legendre Symbol

1. The *Möbius function* $\mu : \mathbb{Z}^{\geq 1} \to \mathbb{Z}$ is defined by

$$\mu(n) := \begin{cases} (-1)^k & \text{if } n \text{ is the product of } k \ge 0 \text{ distinct primes,} \\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that for any integer $n \ge 1$ we have

$$\sum_{d|n} \mu(\frac{n}{d}) = \sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1. \end{cases}$$

(b) *Möbius inversion:* Let (G, +) be an abelian group and let f and g be arbitrary functions $\mathbb{Z}^{\geq 1} \to G$. Use (a) to show that

$$\forall n \in \mathbb{Z}^{\geqslant 1} \colon g(n) = \sum_{d \mid n} f(d)$$

if and only if

$$\forall n \in \mathbb{Z}^{\geq 1} \colon f(n) = \sum_{d|n} \mu(\frac{n}{d})g(d).$$

(c) Let $n \in \mathbb{Z}^{\geq 1}$ and let $\zeta \in \mathbb{C}$ be an n^{th} primitive root of unit. We define the n^{th} cyclotomic polynomial as

$$\Phi_n(X) := \prod_{d \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (X - \zeta^d).$$

Use (b) to show that

$$\Phi_n(X) = \prod_{d|n} (X^d - 1)^{\mu(\frac{n}{d})}.$$

- (d) Deduce that Φ_n has coefficients in \mathbb{Z} and is irreducible in $\mathbb{Q}[X]$.
- (e) Euler's phi function: Deduce that

$$\varphi(n) := |(\mathbb{Z}/n\mathbb{Z})^{\times}| = \sum_{d|n} \mu(\frac{n}{d})d.$$

2. Determine the possibilities for the group $\mu(K)$ of roots of unity in K for all number fields K of degree 4 over \mathbb{Q} .

- 3. Prove that for any odd prime number p the following are equivalent:
 - (a) $p \equiv 1 \mod (4)$.
 - (b) p is totally split in $\mathbb{Z}[i]$.
 - (c) $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.
- 4. Prove that every quadratic number field can be embedded in a cyclotomic field.
- 5. Prove the third case of Gauss's reciprocity law, i.e., that for any odd prime p

$$\left(\frac{2}{p}\right) = \left(-1\right)^{\frac{p^2-1}{8}}.$$

Hint: Use that $(1+i)^2 = 2i$ to evaluate $(1+i)^p$ and prove that

$$\left(\frac{2}{p}\right)(1+i)i^{\frac{p-1}{2}} \equiv 1+i(-1)^{\frac{p-1}{2}} \mod (p).$$

- 6. Calculate the following Legendre symbols:
 - (a) Calculate $\left(\frac{3}{p}\right)$ for any odd prime p.
 - (b) Calculate $\left(\frac{-22}{71}\right)$.