p-adic Numbers, Absolute Values, Completion

1. Let p be a prime number.
(a) Show that the sequence $\frac{1}{10}, \frac{1}{10^{2}}, \frac{1}{10^{3}}, \ldots$ does not converge in \mathbb{Q}_{p}.
(b) For any $a \in \mathbb{Z}$ coprime to p show that the sequence $\left(a^{p^{n}}\right)_{n \geqslant 1}$ converges in \mathbb{Q}_{p}.
(c) Determine this limit.
2. Here we consider \mathbb{Q}_{p} as an abstract field and include $\mathbb{Q}_{\infty}:=\mathbb{R}$.
(a) Show that \mathbb{Q}_{p} and \mathbb{Q}_{q} are not isomorphic for any $p \neq q$.
(b) Prove that every automorphism of \mathbb{Q}_{p} is trivial.

Hint: Look at which integers are squares in the respective field.
*3. Show that there is a canonical isomorphism $\mathbb{Z}[[X]] /(X-p) \xrightarrow{\sim} \mathbb{Z}_{p}$.
4. Show that for any absolute value \| on a field K, the maps,$+: K \times K \rightarrow K$ and ()$^{-1}: K \backslash\{0\} \rightarrow K \backslash\{0\}$ are continuous for the induced topology.
5. Let K be a complete non-archimedean field. Show that a series $\sum_{n=0}^{\infty} a_{n}$ with summands in K converges if and only if $\lim _{n \rightarrow \infty} a_{n}=0$ in K.
6. Let K be a field that is complete with respect to a p-adic absolute value. Consider $x \in K$ with $|x|<1$ and $\alpha, \beta \in \mathbb{Z}_{p}$ and $m, n \in \mathbb{Z}$ with $n \geqslant 0$. Prove:
(a) The binomial coefficient $\binom{\alpha}{n}:=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!}$ lies in \mathbb{Z}_{p}.
(b) $F_{\alpha}(x):=\sum_{n \geqslant 0}\binom{\alpha}{n} x^{n} \in K$ is well-defined and satisfies $\left|F_{\alpha}(x)-1\right|<1$.
(c) $F_{\alpha+\beta}(x)=F_{\alpha}(x) \cdot F_{\beta}(x)$.
(d) $F_{m \alpha}(x)=F_{\alpha}(x)^{m}$.
(e) $F_{m}(x)=(1+x)^{m}$.
(f) $y:=F_{m / n}(x)$ is the only solution of the equation $y^{n}=(1+x)^{m}$ with $|y-1|<1$, if $p \nmid n$.

This therefore justifies writing $F_{\alpha}(x)=(1+x)^{\alpha}$.

* (g) Do we then also have $\left((1+x)^{\alpha}\right)^{\beta}=(1+x)^{\alpha \beta}$?
*7. (Newton method for finding zeros of a polynomial) Let p be a prime number, let $f \in \mathbb{Z}_{p}[X]$ and let $\alpha \in \mathbb{Z}_{p}$ be a root of f such that $f^{\prime}(\alpha) \neq 0$. Set

$$
U:=\left\{a \in \mathbb{Z}_{p}| | f(a)\left|<\left|f^{\prime}(a)\right|^{2} \text { and }\right| \alpha-a\left|<\left|f^{\prime}(a)\right|\right\}\right.
$$

which is an open neighborhood of α in \mathbb{Z}_{p}. Let $a_{1} \in U$ and recursively define $a_{n+1}:=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)}$ for $n \geqslant 1$. Show that for all n :
(a) $a_{n} \in U$,
(b) $\left|f^{\prime}\left(a_{n}\right)\right|=\left|f^{\prime}\left(a_{1}\right)\right|$,
(c) $\left|f\left(a_{n}\right)\right| \leqslant\left|f^{\prime}\left(a_{1}\right)\right|^{2} t^{2^{n-1}}$ for $t=\left|f\left(a_{1}\right) / f^{\prime}\left(a_{1}\right)\right|<1$.

Moreover, show that $\lim _{n \rightarrow \infty} a_{n}=\alpha$ and $\left|f^{\prime}(\alpha)\right|=\left|f^{\prime}\left(a_{1}\right)\right|$.

