p-ADIC NUMBERS, ABSOLUTE VALUES, COMPLETION

- 1. Let p be a prime number.
 - (a) Show that the sequence $\frac{1}{10}, \frac{1}{10^2}, \frac{1}{10^3}, \ldots$ does not converge in \mathbb{Q}_p .
 - (b) For any $a \in \mathbb{Z}$ coprime to p show that the sequence $(a^{p^n})_{n \ge 1}$ converges in \mathbb{Q}_p .
 - (c) Determine this limit.
- 2. Here we consider \mathbb{Q}_p as an abstract field and include $\mathbb{Q}_{\infty} := \mathbb{R}$.
 - (a) Show that \mathbb{Q}_p and \mathbb{Q}_q are not isomorphic for any $p \neq q$.
 - (b) Prove that every automorphism of \mathbb{Q}_p is trivial.

Hint: Look at which integers are squares in the respective field.

- *3. Show that there is a canonical isomorphism $\mathbb{Z}[[X]]/(X-p) \xrightarrow{\sim} \mathbb{Z}_p$.
- 4. Show that for any absolute value | | on a field K, the maps $+, \cdot : K \times K \to K$ and $()^{-1}: K \setminus \{0\} \to K \setminus \{0\}$ are continuous for the induced topology.
- 5. Let K be a complete non-archimedean field. Show that a series $\sum_{n=0}^{\infty} a_n$ with summands in K converges if and only if $\lim_{n \to \infty} a_n = 0$ in K.
- 6. Let K be a field that is complete with respect to a p-adic absolute value. Consider $x \in K$ with |x| < 1 and $\alpha, \beta \in \mathbb{Z}_p$ and $m, n \in \mathbb{Z}$ with $n \ge 0$. Prove:
 - (a) The binomial coefficient $\binom{\alpha}{n} := \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$ lies in \mathbb{Z}_p .
 - (b) $F_{\alpha}(x) := \sum_{n \ge 0} {\alpha \choose n} x^n \in K$ is well-defined and satisfies $|F_{\alpha}(x) 1| < 1$.
 - (c) $F_{\alpha+\beta}(x) = F_{\alpha}(x) \cdot F_{\beta}(x)$.
 - (d) $F_{m\alpha}(x) = F_{\alpha}(x)^m$.
 - (e) $F_m(x) = (1+x)^m$.
 - (f) $y := F_{m/n}(x)$ is the only solution of the equation $y^n = (1+x)^m$ with |y-1| < 1, if $p \nmid n$.

This therefore justifies writing $F_{\alpha}(x) = (1+x)^{\alpha}$.

*(g) Do we then also have $((1+x)^{\alpha})^{\beta} = (1+x)^{\alpha\beta}$?

*7. (Newton method for finding zeros of a polynomial) Let p be a prime number, let $f \in \mathbb{Z}_p[X]$ and let $\alpha \in \mathbb{Z}_p$ be a root of f such that $f'(\alpha) \neq 0$. Set

$$U := \{ a \in \mathbb{Z}_p \, | \, |f(a)| < |f'(a)|^2 \text{ and } |\alpha - a| < |f'(a)| \},\$$

which is an open neighborhood of α in \mathbb{Z}_p . Let $a_1 \in U$ and recursively define $a_{n+1} := a_n - \frac{f(a_n)}{f'(a_n)}$ for $n \ge 1$. Show that for all n:

- (a) $a_n \in U$,
- (b) $|f'(a_n)| = |f'(a_1)|,$
- (c) $|f(a_n)| \leq |f'(a_1)|^2 t^{2^{n-1}}$ for $t = |f(a_1)/f'(a_1)| < 1$.

Moreover, show that $\lim_{n \to \infty} a_n = \alpha$ and $|f'(\alpha)| = |f'(a_1)|$.