Exercise Sheet 11

EXTENSIONS OF COMPLETE ABSOLUTE VALUES

- 1. (a) Show that $X^3 X^2 2X 8$ is irreducible in $\mathbb{Q}[X]$ but splits completely in $\mathbb{Q}_2[X]$.
 - (b) Find two monic polynomials of degree 3 in $\mathbb{Q}_5[X]$ with the same Newton polygons, but one irreducible and the other not.
 - (c) Hensel's lemma concerns a polynomial f with a factorization $(f \mod \mathfrak{p}) = \overline{g}\overline{h}$ such that \overline{g} and \overline{h} are coprime. Show by a counterexample that the assumption 'coprime' is necessary.
- 2. Prove that every finite extension of $\mathbb{C}((t))$ of degree *n* is isomorphic to $\mathbb{C}((s))$ where $s^n = t$.
- 3. Let K be a non-archimedean complete field such that \mathcal{O}_K is a discrete valuation ring. Prove that for every finite extension L/K with separable residue field extension there exists $\alpha \in L$ such that $\mathcal{O}_L = \mathcal{O}_K[\alpha]$.
- 4. (Krasner's lemma) Let K be a field that is complete for a non-archimedean absolute value | |. Let | | also denote the unique extension to an algebraic closure \bar{K} . Consider an element $\alpha \in \bar{K}$ that is separable over K, and let $\alpha = \alpha_1, \ldots, \alpha_n$ be its Galois conjugates over K. Consider an element $\beta \in \bar{K}$ such that

$$|\alpha - \beta| < |\alpha - \alpha_i|$$

for all $2 \leq i \leq n$. Show that $K(\alpha) \subseteq K(\beta)$.

Hint: Let M be the Galois closure of the extension $K(\alpha, \beta)/K(\beta)$ and consider the action of $\text{Gal}(M/K(\beta))$ on α .

*5. Consider an integer $n \ge 1$ and a finite set S of rational primes $p \le \infty$ (allowing $\mathbb{Q}_{\infty} = \mathbb{R}$). For each $p \in S$ consider field extensions $L_{p,i}/\mathbb{Q}_p$ for $1 \le i \le r_p$ such that $\sum_{i=1}^{r_p} [L_{p,i}/\mathbb{Q}_p] = n$. Show that there exists a number field L of degree n over \mathbb{Q} such that for every $p \in S$ we have $L \otimes_{\mathbb{Q}} \mathbb{Q}_p \cong \prod_{i=1}^{r_p} L_{p,i}$.

Hint: Use Krasner's lemma (exercise 4) or adapt it suitably.