Exercise Sheet 12

EXTENSIONS OF ABSOLUTE VALUES, LOCAL AND GLOBAL FIELDS

1. Let L/K be a purely inseparable finite extension of degree q. Show that every absolute value | | on K possesses a unique extension to L, given by the formula

$$|y| := |y^q|^{q^{-1}}.$$

- *2. Let L/K be a finite field extension and let || be a (nontrivial) absolute value on L. Show that the restriction of || to K is nontrivial.
 (*Hint:* Use Newton polygons.)
- 3. (a) Determine all the absolute values on $\mathbb{Q}(\sqrt{5})$.
 - (b) How many extensions to $\mathbb{Q}(\sqrt[n]{2})$ does the archimedean absolute value on \mathbb{Q} admit?
- 4. Let p be a prime number and $\overline{\mathbb{Q}}$ an algebraic closure of \mathbb{Q} .
 - (a) Show that $||_p$ extends to some absolute value || on $\overline{\mathbb{Q}}$.
 - (b) For any subfield $K \subset \overline{\mathbb{Q}}$ which is finite over \mathbb{Q} let \hat{K} be the completion of K with respect to the restriction of | |. Show that for any subfields $K \subset L \subset \overline{\mathbb{Q}}$ which are finite over \mathbb{Q} we get a natural inclusion $\hat{K} \hookrightarrow \hat{L}$.
 - (c) Show that the union $\overline{\mathbb{Q}}_p$ of all these \hat{K} is an algebraic closure of \mathbb{Q}_p .
 - (d) Show that there is a natural isomorphism

$$\operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p) \xrightarrow{\sim} \operatorname{Stab}_{\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})}(||).$$

- 5. (Product formula) A non-archimedean absolute value | | on a field K for which \mathcal{O}_K is a discrete valuation ring with finite residue field $\mathcal{O}_K/\mathfrak{m}$ is called normalized if $|\pi| = |\mathcal{O}_K/\mathfrak{m}|^{-1}$ for any element π with $(\pi) = \mathfrak{m}$. The usual absolute value on \mathbb{Q}_p is normalized.
 - (a) Show that for all $a \in \mathbb{Q}^{\times}$ we have $\prod_{p \leq \infty} |a|_p = 1$.
 - (b) For any finite field k, write down all normalized absolute values on k(t).
 - (c) For any finite field k and any $a \in k(t)^{\times}$, prove that $\prod_{v} |a|_{v} = 1$, where the product is taken over all normalized absolute values on k(t).
- *6. Show that any local field is the completion of a global field at an absolute value.