Exercise Sheet 14

DIRICHLET DENSITY, PRIMES IN ARITHMETIC PROGRESSIONS

- 1. Does there exist a number field which does not embed into \mathbb{Q}_p for any p?
- 2. Determine the Dirichlet density of the set of primes $p \equiv 3 \mod(4)$ that split completely in the field $\mathbb{Q}(\sqrt[3]{2})$.
- 3. Let L/K be an extension of number fields. Prove that L = K if and only if the set of primes $\mathfrak{p} \subset \mathcal{O}_K$ which are totally split in L has Dirichlet density $> \frac{1}{2}$.
- 4. Let L/K be an extension of number fields. Prove that L/K is galois if and only if for almost all primes $\mathfrak{p} \subset \mathcal{O}_K$, if there exists a prime $\mathfrak{P}|\mathfrak{p}$ of \mathcal{O}_L with $f_{\mathfrak{P}/\mathfrak{p}} = 1$, then \mathfrak{p} is totally split in \mathcal{O}_L .
- 5. Let a be an integer that is not a third power. Let A be the set of prime numbers p such that $a \mod (p)$ is a third power in \mathbb{F}_p .
 - (a) Prove that A and its complement are both infinite.
 - (b) Prove that there is no integer N such that the property $p \in A$ depends only on the residue class of p modulo (N).