Dirichlet Density, Primes in Arithmetic Progressions

1. Does there exist a number field which does not embed into \mathbb{Q}_{p} for any p ?
2. Determine the Dirichlet density of the set of primes $p \equiv 3 \bmod (4)$ that split completely in the field $\mathbb{Q}(\sqrt[3]{2})$.
3. Let L / K be an extension of number fields. Prove that $L=K$ if and only if the set of primes $\mathfrak{p} \subset \mathcal{O}_{K}$ which are totally split in L has Dirichlet density $>\frac{1}{2}$.
4. Let L / K be an extension of number fields. Prove that L / K is galois if and only if for almost all primes $\mathfrak{p} \subset \mathcal{O}_{K}$, if there exists a prime $\mathfrak{P} \mid \mathfrak{p}$ of \mathcal{O}_{L} with $f_{\mathfrak{P} / \mathfrak{p}}=1$, then \mathfrak{p} is totally split in \mathcal{O}_{L}.
5. Let a be an integer that is not a third power. Let A be the set of prime numbers p such that $a \bmod (p)$ is a third power in \mathbb{F}_{p}.
(a) Prove that A and its complement are both infinite.
(b) Prove that there is no integer N such that the property $p \in A$ depends only on the residue class of p modulo (N).
