D-MATH
Prof. Richard Pink

Solutions 1

Norm, Trace, Discriminant and Rings of Integers

1. Show that $\mathbb{Z}[i]^{\times}=\{ \pm 1, \pm i\}$.

Solution: Because $\mathbb{Q}(i)$ is a quadratic number field with $i^{2}+1=0$, a proposition from the lecture tells us that the ring of integers of $\mathbb{Q}(i)$ is $\mathbb{Z}[i]$. Since $\operatorname{Gal}(\mathbb{Q}(i) / \mathbb{Q})=\{\operatorname{id}, \overline{(\cdot)}\}$, where $\overline{(\cdot)}$ denotes complex conjugation, we have

$$
\operatorname{Nm}_{\mathbb{Q}(i) / \mathbb{Q}}(\alpha)=\alpha \bar{\alpha}=a^{2}+b^{2}
$$

for $\alpha=a+b i \in \mathbb{Z}[i]$. We know from the lecture that α is a unit in $\mathbb{Z}[i]$ if and only if $N m_{\mathbb{Q}(i) / \mathbb{Q}}(\alpha)$ is a unit in \mathbb{Z}, i.e. ± 1. But the only elements of $\mathbb{Z}[i]$ with norm ± 1 are $\pm 1, \pm i$ and the conclusion follows.
2. Let k be a field of characteristic $\neq 2$. Let $A:=k[x]$ for some transcendental x and let $K:=k(x)$ denote its fraction field. Let $L:=K[y] /\left(y^{2}-f\right)$ for some separable $f \in A$ with $\operatorname{deg} f>0$, and let B be the integral closure of A in L. Show that

$$
B=A \oplus A \cdot y
$$

Solution: Since $y^{2}-f=0$, the element y is integral over A and thus $A \oplus A \cdot y \subseteq B$. To show the reverse inclusion, let $\alpha \in B$. We can write $\alpha=a+b y$ with $a, b \in K$, because 1 and y form a K-basis of L. We need to show that $a, b \in A$. By a proposition from the lecture, we know that $\operatorname{Tr}_{L / K}(\alpha), \mathrm{Nm}_{L / K}(\alpha) \in A$. Since L is galois of degree 2 over K with the nontrivial automorphism mapping y to $-y$, we obtain

$$
\begin{aligned}
\operatorname{Tr}_{L / K}(\alpha) & =(a+b y)+(a-b y)=2 a \\
\operatorname{Nm}_{L / K}(\alpha) & =(a+b y)(a-b y)=a^{2}-b^{2} y^{2}=a^{2}-b^{2} f .
\end{aligned}
$$

The number 2 is invertible in $k \subseteq A$ and therefore $a \in A$. Hence $b^{2} f \in A$. Because f is separable, it is squarefree and therefore any nonconstant denominator of b^{2} cannot divide f. It follows that b^{2} does not have a nonconstant denominator and hence $b \in A$, as desired.
3. Determine the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$ and its discriminant.

Solution: This solution partly follows https://math.stackexchange.com/a/ 183093. Let $K:=\mathbb{Q}(\sqrt[3]{2})$. We show that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{2}]$. Let $\alpha=\frac{a_{1}+a_{2} \sqrt[3]{2}+a_{3} \sqrt[3]{\sqrt{2}^{2}}}{3} \in$ $\mathcal{O}_{K} \backslash \mathbb{Z}$ be some element. We need to show that the a_{i} are integers and $\equiv 0 \bmod 3$.

The minimal polynomial p of α has degree 3. By considering the action of the Galois group $\operatorname{Gal}(L / \mathbb{Q})$ of the Galois closure $L=\mathbb{Q}\left[\sqrt[3]{2}, e^{2 \pi i / 3}\right]$ of K, we see that

$$
p=(X-\alpha)(X-\sigma(\alpha))\left(X-\sigma^{2}(\alpha)\right)
$$

for $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$ with $\sigma(\sqrt[3]{2})=e^{2 \pi i / 3} \sqrt[3]{2}$ and $\sigma\left(e^{2 \pi i / 3}\right)=e^{2 \pi i / 3}$. After expanding, we obtain
$p=X^{3}-a_{1} X^{2}+\frac{a_{1}^{2}-2 a_{2} a_{3}}{3} X+\frac{6 a_{1} a_{2} a_{3}-a_{1}^{3}-2 a_{2}^{3}-4 a_{3}^{3}}{27}=: X^{3}+e_{1} X^{2}+e_{2} X+e_{3}$.
and the coefficients e_{i} lie in \mathbb{Z}. Hence $a_{1} \in \mathbb{Z}$. By a direct calculation, we see that $\operatorname{Tr}_{K / \mathbb{Q}}(\sqrt[3]{2} \alpha)=-2 a_{3}$ and $\operatorname{Tr}_{K / \mathbb{Q}}\left(\sqrt[3]{2}^{2} \alpha\right)=-2 a_{2}$ and therefore $2 a_{2}, 2 a_{3} \in \mathbb{Z}$. Consider the equation:

$$
27 \cdot 4 \cdot e_{3}=6 a_{1} \cdot 2 a_{2} \cdot 2 a_{3}-4 a_{1}^{3}-8 a_{2}^{3}-16 a_{3}^{3}
$$

All summands on the right-hand side are integers and all of them, except possibly $8 a_{2}^{3}$, are even. It follows that $8 a_{2}^{3}$ is even and hence $a_{2} \in \mathbb{Z}$, because the left-hand side is even. It follows that all of the summands, except possibly $16 a_{3}^{3}$, are divisible by 4 . Hence $16 a_{3}^{3}$ is divisible by 4 and therefore $a_{3} \in \mathbb{Z}$, because the left-hand side is divisible by 4 . Thus all of a_{1}, a_{2}, a_{3} lie in \mathbb{Z}.
By adding integer multiples of $1, \sqrt[3]{2}, \sqrt[3]{2}^{2}$, we may assume that $a_{i} \in\{-1,0,1\}$ for all i. Because $\left|a_{i}\right| \leqslant 1$, the absolute value of the numerator of e_{3} is smaller than 27 and hence $e_{3}=0$. This implies, by a case distinction on the values of the a_{i}, that all of them are zero and therefore $\equiv 0 \bmod 3$, as desired.
To calculate the discriminant, we need to calculate the traces of $1, \sqrt[3]{2}, \sqrt[3]{2}^{2}, \sqrt[3]{2}^{3}=$ 2 and $\sqrt[3]{2}^{4}=2 \sqrt[3]{2}$. Because the coefficients of X^{2} in the minimal polynomials $X^{3}-2$ and $X^{3}-4$ of $\sqrt[3]{2}$ and $\sqrt[3]{2}^{2}$ vanish, the traces of those two elements also vanish. We calculate

$$
\begin{aligned}
\operatorname{disc}\left(\mathcal{O}_{K}\right) & =\operatorname{det}\left(\begin{array}{ccc}
\operatorname{Tr}_{K / \mathbb{Q}}(1) & \operatorname{Tr}_{K / \mathbb{Q}}(\sqrt[3]{2}) & \operatorname{Tr}_{K / \mathbb{Q}}\left(\sqrt[3]{2}^{2}\right) \\
\operatorname{Tr}_{K / \mathbb{Q}}(\sqrt[3]{2}) & \operatorname{Tr}_{K / \mathbb{Q}}\left(\sqrt[3]{2}{ }^{2}\right) & \operatorname{Tr}_{K / \mathbb{Q}}(2) \\
\operatorname{Tr}_{K / \mathbb{Q}}\left(\sqrt[3]{2}^{2}\right) & \operatorname{Tr}_{K / \mathbb{Q}}(2) & \operatorname{Tr}_{K / \mathbb{Q}}(2 \sqrt[3]{2})
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 0 & 6 \\
0 & 6 & 0
\end{array}\right)=-108=-2^{4} \cdot 3^{3} .
\end{aligned}
$$

4. This is an example by Dedekind of a cubic number field K whose ring of integers is not generated by one element over \mathbb{Z}.
(a) Show that the polynomial $f:=X^{3}+X^{2}-2 X+8$ is irreducible over \mathbb{Q} and thus defines a cubic number field $K:=\mathbb{Q}(\theta)$ with $f(\theta)=0$.
(b) Show that the ring of integers of K is $\mathcal{O}_{K}=\mathbb{Z} \oplus \mathbb{Z} \cdot \theta \oplus \mathbb{Z} \cdot \beta$ for $\beta:=\frac{\theta+\theta^{2}}{2}$.
(c) Show that the kernel of the surjection $\mathbb{Z}[X, Y] \rightarrow \mathcal{O}_{K}$ defined by $g(X, Y) \mapsto$ $g(\theta, \beta)$ is the ideal

$$
\left(X^{2}-2 Y+X, X Y-X+4, Y^{2}-Y+2 X+2\right)
$$

(d) Deduce that $\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong\left(\mathbb{F}_{2}\right)^{3}$.
(e) Show that $\left(\mathbb{F}_{2}\right)^{3}$ is not generated by one element over \mathbb{F}_{2}.
(f) Deduce that there exists no $\xi \in \mathcal{O}_{K}$ such that $\mathcal{O}_{K}=\mathbb{Z}[\xi]$.

Solution: For a different approach by Brian Conrad to this example see: https://math.stanford.edu/~conrad/154Page/handouts/nonprim.pdf
(a) Since f is primitive over \mathbb{Z} and of positive degree, by the Gauss lemma, the polynomial f is irreducible in $\mathbb{Z}[X]$ if and only if it is irreducible in $\mathbb{Q}[X]$. Consider the reduction $\bar{f}=X^{3}+X^{2}+X+2 \in \mathbb{F}_{3}[X]$ of f modulo 3. If f is reducible over \mathbb{Z}, then it has a root in \mathbb{Z} and hence the reduction has a root in \mathbb{F}_{3}. Since \bar{f} does not have a root in \mathbb{F}_{3} the conclusion follows.
(b) The number θ is integral over \mathbb{Z} because its minimal polynomial has integer coefficients. Since $\beta^{2}-\beta+2 \theta+2=0$, the number β is integral over $\mathbb{Z}[\theta]$ and hence integral over \mathbb{Z}. Furthermore, the numbers $1, \theta, \beta$ are \mathbb{Z}-linearly independent, because they are \mathbb{Q}-linearly independent. Thus \mathcal{O}_{K} contains $\Gamma:=\mathbb{Z} \oplus \mathbb{Z} \cdot \theta \oplus \mathbb{Z} \cdot \beta$.
To prove equality we compute the discriminant of Γ. We have $\operatorname{Tr}_{K / \mathbb{Q}}(1)=$ $[K: \mathbb{Q}]=3$. To calculate the traces of θ and θ^{2}, we write down the matrix of the \mathbb{Q}-linear map $K \ni x \mapsto \theta x$ with respect to the basis $(1, \theta, \beta)$. It is

$$
M:=\left(\begin{array}{ccc}
0 & 0 & -4 \\
1 & -1 & 1 \\
0 & 2 & 0
\end{array}\right) .
$$

We see that $\operatorname{Tr}_{K / \mathbb{Q}}(\theta)=\operatorname{Tr}(M)=-1$ and $\operatorname{Tr}_{K / \mathbb{Q}}\left(\theta^{2}\right)=\operatorname{Tr}\left(M^{2}\right)=5$. To calculate the traces of $\beta, \theta \beta$ and β^{2}, we use the \mathbb{Q}-linearity of the trace and the relation for θ^{3} given by its minimal polynomial. We obtain

$$
\begin{aligned}
\operatorname{disc}(\Gamma) & =\operatorname{det}\left(\begin{array}{ccc}
\operatorname{Tr}_{K / \mathbb{Q}}(1) & \operatorname{Tr}_{K / \mathbb{Q}}(\theta) & \operatorname{Tr}_{K / \mathbb{Q}}(\beta) \\
\operatorname{Tr}_{K / \mathbb{Q}}(\theta) & \operatorname{Tr}_{K / \mathbb{Q}}\left(\theta^{2}\right) & \operatorname{Tr}_{K / \mathbb{Q}}(\theta \beta) \\
\operatorname{Tr}_{K / \mathbb{Q}}(\beta) & \operatorname{Tr}_{K / \mathbb{Q}}(\beta \theta) & \operatorname{Tr}_{K / \mathbb{Q}}\left(\beta^{2}\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
3 & -1 & 2 \\
-1 & 5 & -13 \\
2 & -13 & -2
\end{array}\right) \\
& =-503
\end{aligned}
$$

By a proposition from the course we know that

$$
\operatorname{disc}(\Gamma)=\left[\mathcal{O}_{K}: \Gamma\right]^{2} \operatorname{disc}\left(\mathcal{O}_{K}\right)
$$

Since 503 is prime and $\operatorname{disc}\left(\mathcal{O}_{K}\right) \in \mathbb{Z}$ it follows that $\left[\mathcal{O}_{K}: \Gamma\right]=1$ and hence $\Gamma=\mathcal{O}_{K}$, as desired.
(c) The three generators of the ideal were obtained by expressing $\theta^{2}, \theta \beta, \beta^{2}$ in terms of the basis $1, \theta, \beta$. So the ideal I generated by them is contained in the kernel of the surjection. Conversely, by induction on the degree we find that every polynomial in $\mathbb{Z}[X, Y]$ is congruent modulo I to a polynomial of degree $\leqslant 1$. But since $1, \theta, \beta$ is a \mathbb{Z}-basis of \mathcal{O}_{K}, the only polynomial of degree $\leqslant 1$ in the kernel is the zero polynomial. Therefore the kernel is I.
(d) By part (c), we have $\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong \mathbb{F}_{2}[\bar{X}, \bar{Y}] / \bar{I}$, where $\bar{X}, \bar{Y}, \bar{I}$ are the images of X, Y, I in the reduction. By direct calculation, the homomorphism $\mathbb{F}_{2}[X, Y] \rightarrow\left(\mathbb{F}_{2}\right)^{3}, f \mapsto(f(1,1), f(0,0), f(0,1))$ vanishes on the generators of \bar{I}; hence it induces a homomorphism of \mathbb{F}_{2}-algebras $\mathbb{F}_{2}[\bar{X}, \bar{Y}] / \bar{I} \rightarrow\left(\mathbb{F}_{2}\right)^{3}$. This homomorphism is surjective, because it comes from the evaluation at three distinct and hence pairwise coprime maximal ideals. On the other hand, part (b) implies that both sides are \mathbb{F}_{2}-vector spaces of dimension 3. Thus the homomorphism is an isomorphism.
(e) Assume, for contradiction, that $\left(\mathbb{F}_{2}\right)^{3}$ is generated by α over \mathbb{F}_{2}. Then $\alpha^{2}=\alpha$, because every element of \mathbb{F}_{2} satisfies the same equality. Thus $\mathbb{F}_{2}[\alpha]=\mathbb{F}_{2}+\mathbb{F}_{2} \alpha$ has cardinality $\leqslant 4<8=\left|\left(\mathbb{F}_{2}\right)^{3}\right|$, contradiction.
(f) Assume, for contradiction, that $\mathcal{O}_{K}=\mathbb{Z}[\xi]$. Then, by part (d), we have $\left(\mathbb{F}_{2}\right)^{3}=\mathbb{F}_{2}[\bar{\xi}]$, where $\bar{\xi}$ is the image of ξ in the reduction. By part (e), this is a contradiction.
5. Two field extensions L / K and L^{\prime} / K are called linearly disjoint over K if $L \otimes_{K} L^{\prime}$ is a field. Let $L:=\mathbb{Q}(\sqrt[3]{3})$ and let $L^{\prime}:=\mathbb{Q}(\zeta \sqrt[3]{3})$, where ζ is a primitive 3rd root of unity. Show that $L \cap L^{\prime}=\mathbb{Q}$, but L and L^{\prime} are not linearly disjoint over \mathbb{Q}.
Solution: Let $K=L \cap L^{\prime}$. We obtain the towers $L / K / \mathbb{Q}$ and $L^{\prime} / K / \mathbb{Q}$. Because $[L: \mathbb{Q}]=\left[L^{\prime}: \mathbb{Q}\right]=3$ is prime, it follows from the multiplicativity of the extension degrees that either $L=K=L^{\prime}$ or $K=\mathbb{Q}$. But $L \neq L^{\prime}$, because L^{\prime} contains elements like $\zeta \sqrt[3]{3}$ that lie in $\mathbb{C} \backslash \mathbb{R}$, while $L \subseteq \mathbb{R}$. Hence $L \cap L^{\prime}=\mathbb{Q}$.
To show that L and L^{\prime} are not linearly disjoint, we use a proposition from the lecture: The fields L and L^{\prime} are linearly disjoint if and only if $\left[L L^{\prime}: \mathbb{Q}\right]=[L: \mathbb{Q}] \cdot\left[L^{\prime}: \mathbb{Q}\right]$. We have $L L^{\prime}=\mathbb{Q}(\sqrt[3]{2}, \zeta \sqrt[3]{2})=\mathbb{Q}(\sqrt[3]{2}, \zeta)$ and $\zeta^{2}+\zeta+1=0$ and hence $\left[L L^{\prime}: \mathbb{Q}\right]=$ $6<[L: \mathbb{Q}] \cdot\left[L^{\prime}: \mathbb{Q}\right]=9$. In conclusion, the fields L and L^{\prime} are not linearly disjoint.
6. Let L / K be an inseparable finite field extension. Then $\operatorname{Tr}_{L / K}$ is identically zero.

Solution: See, for example, Lemma 1.1 in the following notes by Brian Conrad: https://math.stanford.edu/~conrad/676Page/handouts/normtrace.pdf

