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Solutions 2
Dedekind Rings and Lattices

1. Consider the number field K := Q(
√
−5) and its ring of integers OK = Z[

√
−5].

(a) Show that (3) = pp′ with prime ideals p := (3, 1+
√
−5) and p′ := (3, 1−

√
−5).

(b) Determine the structure of the ring OK/(3).
(c) Determine the inverse of p as a fractional ideal.
(d) Which powers of the ideal p are principal?
(e) Compute the factorization of (2) into prime ideals.
(f) Compute the factorization of (5) into prime ideals.
(g) Compute the factorization of (7) into prime ideals.

Solution:

(a) By definition the ideal pp′ is generated by 3 · 3 = 9 and 3 · (1±
√
−5) and

(1 +
√
−5) · (1−

√
−5) = 6. Thus it contains 9−6 = 3, which in turn divides

all other generators; hence pp′ = (3).
Since 1 ±

√
−5 ̸∈ (3), both p and p′ properly contain (3). Therefore the

formula pp′ = (3) also implies that both p and p′ are properly contained
in OK . Since OK/(3) has order 9, it follows that the factor rings OK/p and
OK/p

′ both have order 3. But any ring of order 3 is isomorphic to F3 and
hence a field; which implies that p and p′ are prime ideals.

(b) Since 2 · (1 +
√
−5) + 2 · (1 −

√
−5) − 3 = 1 lies in p + p′, the ideals p and

p′ are coprime. By part (a) and the Chinese Remainder Theorem it follows
that OK/(3) ∼= OK/p×OK/p

′ ∼= F3 × F3.
(c) The inverse fractional ideal of (3) is (1

3
); hence (a) implies that p−1 = (1

3
)·p′ =

(1, 1−
√
−5

3
).

(d) For any principal ideal a = (a + b
√
−5) ⊆ OK we have [OK : a] = Nm(a) =

|NmK/Q(a + b
√
−5)| = a2 + 5b2. For all a, b ∈ Z this number is ̸= 3. Since

[OK : p] = 3, it follows that p is not principal.
Next, the ideal p2 is generated by the elements 3 · 3 = 9 and 3 · (1 +

√
−5)

and (1 +
√
−5)2 = −4 + 2

√
−5. Thus it also contains the smaller element

9− 3 · (1 +
√
−5) + (−4 + 2

√
−5) = 2−

√
−5.
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This obviously divides the third generator, and since NmK/Q(2 −
√
−5) =

(2 −
√
−5) · (2 +

√
−5) = 22 + 5 = 9, it also divides the first generator.

Since 3 · (1 +
√
−5) + 3 · (2−

√
−5) = 9, it therefore also divides the second

generator; hence p2 = (2−
√
−5) is principal.

Together this shows that the ideal class of p in the class group Cl(OK) has
order 2. Therefore pn is principal if and only if n is even.

(e) Since OK
∼= Z[X]/(X2 + 5) with

√
−5 corresponding to the residue class

of X, we have OK/(2) ∼= F2[X]/(X2 +5). Since X2 +5 = (1+X)2 in F2[X],
it follows that OK/(2) ∼= F2[X]/(1 +X)2. This ring has the unique maximal
ideal (1 +X)/(1 +X)2, and the factor ring is F2

∼= F2[X]/(1 +X) ∼= OK/q
for q := (2, 1 +

√
−5). Thus q is a prime ideal. The isomorphism OK/(2) ∼=

F2[X]/(1 +X)2 also shows that q2 maps to zero in OK/(2); hence q2 ⊆ (2).
Since [OK : q2] = [OK : q]2 = 22 = [OK : (2)], it follows that q2 = (2).
Note: In the same way as in (d) one can show that q is not a principal ideal.
Aliter (using divisibility only): Trial computation shows that (1 +

√
−5)2 =

2(2−
√
−5) is divisible by 2. Thus 1+

√
−5 must be divisible by some prime

ideal dividing (2), i.e., containing 2, and so the ideal q := (2, 1 +
√
−5) is

also divisible by that prime ideal. On the other hand we have 1 +
√
−5 ̸∈

2Z⊕ 2Z
√
−5 = (2). Together this implies that (2) ⫋ q ⫋ OK . Since

[OK : (2)] = 4, it follows that [OK : q] = 2 and that q is a maximal ideal.
In particular q is a prime ideal. Finally, the ideal q2 is generated by the
elements 2 · 2 = 4 and 2 · (1 +

√
−5) and (1 +

√
−5)2 = −4 + 2

√
−5. Thus

it also contains the element −4 + 2 · (1 +
√
−5) − (−4 + 2

√
−5) = 2. Since

that in turn divides all other generators, it follows that q2 = (2).
(f) Since

√
−5

2
= −5, we have (

√
−5) = Z

√
−5 ⊕ Z5 and so OK/(

√
−5) ∼= F5.

As that is a field, the ideal (
√
−5) is a prime ideal. Moreover (

√
−5)2 =

(−5) = (5), and we are done.
(g) SinceOK

∼= Z[X]/(X2+5), we haveOK/(7) ∼= F7[X]/(X2+5) ∼= F7[X]/((X+
3)(X − 3)). This ring has the maximal ideals p̄1 := (X − 3)/(X2 + 5) and
p̄2 := (X + 3)/(X2 + 5). Therefore p1|(7) and p2|(7) for the prime ideals
p1 := (7, 3 −

√
−5) and p2 := (7, 3 +

√
−5). Since p̄1p̄2 = 0, it follows that

(7)|p1p2 and hence (7) = p1p2.

2. Let A be a Dedekind domain.

(a) Show that for any non-zero ideal a ⊆ A, any ideal of A/a is principal.
(b) Show that every ideal of A is generated by two elements.

Solution: (a) As a preparation write a = pν11 · · · pνnn with distinct prime ideals
p1, . . . , pn. Then for each i we have p2i ⫋ pi, so we can choose an element pi ∈
p2i ∖ pi. Also, by the Chinese Remainder Theorem we have

A/p21 · · · p2n
∼−→ A/p21 × . . .× A/p2n.
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Thus there exists an element πi ∈ A whose residue class πi + p21 · · · p2n corresponds
to the tuple with entries 1+p2j for j ̸= i and entry pi+p2i for j = i. By construction
this element satisfies ordpj(πi) = δij for each j.
Now consider any ideal of A/a. We know that this has the form b/a for an ideal
b with a ⊆ b ⊆ A. Thus b = pµ1

1 · · · pµn
n with exponents 0 ⩽ µi ⩽ νi. The

element b := πµ1

1 · · · πµn
n then satisfies ordpj(b) = µj for each j. Also, any prime

ideal dividing the ideal a + (b) also divides a and is therefore one of the pj, and
ordpj(a+ (b)) = min{ordpj(a), ordpj(b)} = µj. Thus a+ (b) = pµ1

1 · · · pµn
n = b, and

so b/a is generated by the residue class of b, as desired.
(b) Obviously the assertion holds for the zero ideal. For any non-zero ideal b ⊆ A
choose an element a ∈ b∖ {0}; then by part (a) for the ring A/(a) there exists an
element b ∈ A with b/(a) = (b) + (a)/(a) and hence b = (b, a), as desired.

3. Show that a subgroup Γ of a finite-dimensional R-vector space V is a complete
lattice if and only if Γ is discrete and V/Γ is compact.
Solution: Suppose that Γ is a complete lattice, i.e., that Γ = Zv1 ⊕ . . .⊕Zvn for
an R-basis v1, . . . , vn of V . Then we can identify V with Rn such that Γ = Zn.
Then Γ is discrete and we get homeomorphisms V/Γ ∼= Rn/Zn ∼= (R/Z)n ∼= (S1)n,
which is compact (and Hausdorff).
Aliter: Then Γ is discrete by definition of the topology of V . Next we have
V = Φ + Γ for Φ := {

∑
xivi | ∀i : 0 ⩽ xi ⩽ 1}. Thus we obtain a continuous

surjective map Φ ↠ V/Γ. Since Φ is bounded and closed, it is compact; hence its
image V/Γ is compact, too.
Conversely, suppose that Γ is discrete and V/Γ is compact. By a proposition from
the lecture, the first condition implies that Γ = Zv1 ⊕ . . . ⊕ Zvm for R-linearly
independent v1, . . . , vm ∈ V . Let V1 := span(v1, . . . , vm) and write V = V1 ⊕ V2

for some subspace V2 ⊆ V . Then we obtain a homeomorphism V/Γ ∼= V1/Γ× V2,
and it follows that dimV2 = 0, because V/Γ is compact. In conclusion, the lattice
Γ is complete.

4. (Minkowski’s theorem on linear forms) Let

Li(x1, . . . , xn) =
n∑

j=1

aijxj, i = 1, . . . , n,

be real linear forms such that det(aij) ̸= 0, and let c1, . . . , cn be positive real num-
bers such that c1 · · · cn > | det(aij)|. Show that there exist integersm1, . . . ,mn ∈ Z,
not all zero, such that for all i ∈ {1, . . . , n}

|Li(m1, . . . ,mn)| < ci.

Hint: Use Minkowski’s lattice point theorem.
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Solution: Let

X := {x ∈ Rn | ∀i ∈ {1, . . . , n} : |Li(x)| < ci}.

Then X is centrally symmetric, because the Li are linear. We want to show that
vol(X) > 2n. Consider the matrix T := (aij). Then

TX = {x ∈ Rn | ∀i ∈ {1, . . . , n} : |Li(T
−1x)| < ci}

= {x ∈ Rn | ∀i ∈ {1, . . . , n} : |xi| < ci}

and thus vol(TX) = 2nc1 · · · cn. Also vol(TX) = | det(T )| · vol(X) and therefore

vol(X) = 2nc1 · · · cn · | det(T )|−1,

which by assumption is > 2n, as desired. The conclusion then follows using
Minkowski’s lattice point theorem with the lattice Zn.

*5. Consider a line ℓ := R · (1, α) in the plane R2 with an irrational slope α ∈ R∖Q.
Show that for any ε > 0, there are infinitely many lattice points P ∈ Z2 of distance
d(P, ℓ) < ε.
Solution: Consider the linear form L1(x1, x2) := 1√

1+α2 · (x1 + αx2). Then for
any point P ∈ R2 we have |L1(P )| = d(P, ℓ). Consider the second linear form
L2(x1, x2) := x2. Then L1 and L2 are linearly independent, so we can apply
Minkowski’s theorem on linear forms. For any c1 > 0 choose c2 ≫ 0 such that the
inequality in Exercise 4 is satisfied. Thus there exists a lattice point P = (x1, x2) ∈
Z2 ∖ {(0, 0)} with |L1(P )| < c1. Since α ̸∈ Q, we then have x1 + αx2 ̸= 0
and hence L1(P ) ̸= 0. Therefore 0 < d(P, ℓ) < c1. Repeating the calculation
with d(P, ℓ) in place of c1 yields a second lattice point P ′ ∈ Z2 ∖ {(0, 0)} which
satisfies 0 < d(P ′, ℓ) < d(P, ℓ). Iterating this we can thus produce lattice points
P, P ′, P ′′, . . . ∈ Z2 ∖ {(0, 0)} with c1 > d(P, ℓ) > d(P ′, ℓ) > d(P ′′, ℓ) > . . . > 0.
The strict inequalities imply that these points are all distinct. Thus there exist
infinitely many points P ∈ Z2 ∖ {(0, 0)} with d(P, ℓ) < c1.
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