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Solutions 2

DEDEKIND RINGS AND LATTICES

1. Consider the number field K := Q(v/—5) and its ring of integers O = Z[/—5].

(a)
(b)
(c)
(d)
(e)
(f)
(g)

Show that (3) = pp’ with prime ideals p := (3, 1++/=5) and p’ := (3, 1—+/=5).
Determine the structure of the ring O /(3).

Determine the inverse of p as a fractional ideal.

Which powers of the ideal p are principal?

Compute the factorization of (2) into prime ideals.

Compute the factorization of (5) into prime ideals.

Compute the factorization of (7) into prime ideals.

Solution:

(a)

By definition the ideal pp’ is generated by 3 -3 = 9 and 3 - (1 &£ +/—5) and
(14++/=5) - (1 —+/=5) = 6. Thus it contains 9—6 = 3, which in turn divides
all other generators; hence pp’ = (3).

Since 14 /=5 ¢ (3), both p and p’ properly contain (3). Therefore the
formula pp’ = (3) also implies that both p and p’ are properly contained
in Ok. Since Ok/(3) has order 9, it follows that the factor rings O /p and
Ok /p’ both have order 3. But any ring of order 3 is isomorphic to F3 and
hence a field; which implies that p and p’ are prime ideals.

Since 2+ (1 ++v/=5) +2- (1 —+/=5) — 3 = 1 lies in p + p’, the ideals p and
p’ are coprime. By part (a) and the Chinese Remainder Theorem it follows
that OK/(B) = OK/]J X OK/]J/ = Fg X ]Fg.

The inverse fractional ideal of (3) is (5); hence (a) implies that p~ = (3)-p’ =
(1,572

For any principal ideal a = (a + by/—5) C Ok we have [Ok : a] = Nm(a) =
|Nmpg g(a + by/=5)| = a® + 5b%. For all a,b € Z this number is # 3. Since
[Ok : p] = 3, it follows that p is not principal.

Next, the ideal p? is generated by the elements 3-3 = 9 and 3 - (1 + +/=5)
and (1 + v/=5)? = —4 + 2y/=5. Thus it also contains the smaller element

9—3-(1+v=5)+(—4+2/-5) = 2—V-5.



This obviously divides the third generator, and since Nmy/g(2 — v/=5) =
(2—+v=5) (24 +V=5) = 22+ 5 =9, it also divides the first generator.
Since 3+ (14 +v/=5) + 3 (2 — v/=5) = 9, it therefore also divides the second
generator; hence p? = (2 — v/—5) is principal.

Together this shows that the ideal class of p in the class group Cl(Ok) has
order 2. Therefore p™ is principal if and only if n is even.

(e) Since O = Z[X]/(X? + 5) with /=5 corresponding to the residue class

of X, we have O /(2) = Fo[X]/(X?+5). Since X?+5 = (1+ X)? in Fy[X],
it follows that O /(2) = Fo[X]/(1 + X)?. This ring has the unique maximal
ideal (14 X)/(1+ X)?2, and the factor ring is Fy = Fy[X]/(1 + X) = Ok/q
for q := (2,1 + +/=5). Thus q is a prime ideal. The isomorphism O /(2) =
Fo[X]/(1 + X)? also shows that g? maps to zero in Ok /(2); hence q* C (2).
Since [Ok : %] =[Ok : q]* = 22 =[Ok : (2)], it follows that g% = (2).
Note: In the same way as in (d) one can show that q is not a principal ideal.
Aliter (using divisibility only): Trial computation shows that (1 4+ v/—5)% =
2(2 —/=5) is divisible by 2. Thus 1+ /=5 must be divisible by some prime
ideal dividing (2), i.e., containing 2, and so the ideal q := (2,1 + 1/=5) is
also divisible by that prime ideal. On the other hand we have 1 + /—5 ¢
27.® 27+/—5 = (2). Together this implies that (2) & q & Ok. Since
[Ok : (2)] =4, it follows that [Ok : q] = 2 and that q is a maximal ideal.
In particular q is a prime ideal. Finally, the ideal g* is generated by the
elements 2-2 =4 and 2 - (1 ++/=5) and (1 + v/=5)? = —4 + 2\/=5. Thus
it also contains the element —4 + 2 - (1 + v/—5) — (=4 + 2v/=5) = 2. Since
that in turn divides all other generators, it follows that g% = (2).

(f) Since V=5 = —5, we have (v/=5) = Zv/=5 ® Z5 and so Ok /(v/—5) = Fs.
As that is a field, the ideal (y/—5) is a prime ideal. Moreover (/—5)? =
(—5) = (5), and we are done.

(g) Since O = Z[X]/(X?+5), we have Ok /(7) = F;[X]/(X?*+5) = F;[X]/(X+
3)(X — 3)). This ring has the maximal ideals p; := (X — 3)/(X? +5) and
P2 = (X + 3)/(X? + 5). Therefore p;|(7) and po|(7) for the prime ideals
p1 = (7,3 — v/=5) and py := (7,3 + /—5). Since p1p, = 0, it follows that
(7)|p1p2 and hence (7) = pipo.

2. Let A be a Dedekind domain.

(a) Show that for any non-zero ideal a C A, any ideal of A/a is principal.
(b) Show that every ideal of A is generated by two elements.

Solution: (a) As a preparation write a = p7* - - pr» with distinct prime ideals

P1,...,Pn. Then for each i we have p? ;Ct p;, so we can choose an element p; €
p? \ p;. Also, by the Chinese Remainder Theorem we have

Afpl--ph = Afpl x ... x Afpl.
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Thus there exists an element 7; € A whose residue class 7; + p? - - - p2 corresponds
to the tuple with entries 1—1—]3? for j # i and entry p;+p? for j = i. By construction
this element satisfies ord,, (m;) = d;; for each j.

Now consider any ideal of A/a. We know that this has the form b/a for an ideal
b witha C b C A Thus b = p/*---p» with exponents 0 < p; < v;. The
element b := 7" ---wh" then satisfies ord, (b) = p; for each j. Also, any prime
ideal dividing the ideal a + (b) also divides a and is therefore one of the p;, and
ord, (a+ (b)) = min{ord,, (a),ordy, (b)} = ;. Thus a + (b) = p/* ---pkn = b, and
so b/a is generated by the residue class of b, as desired.

(b) Obviously the assertion holds for the zero ideal. For any non-zero ideal b C A
choose an element a € b~ {0}; then by part (a) for the ring A/(a) there exists an
element b € A with b/(a) = (b) + (a)/(a) and hence b = (b, a), as desired.

. Show that a subgroup I' of a finite-dimensional R-vector space V is a complete
lattice if and only if T' is discrete and V/T" is compact.

Solution: Suppose that I' is a complete lattice, i.e., that I' = Zv, & ... @ Zv, for
an R-basis vy,...,v, of V. Then we can identify V' with R" such that ' = Z".
Then I is discrete and we get homeomorphisms V/T' = R"/Z" = (R/Z)" = (S*)",
which is compact (and Hausdorff).

Aliter: Then I' is discrete by definition of the topology of V. Next we have
V=¢+T for & :={> au | Vi:0<ax <1}. Thus we obtain a continuous
surjective map ® — V/T'. Since ® is bounded and closed, it is compact; hence its
image V/I" is compact, too.

Conversely, suppose that I" is discrete and V/T" is compact. By a proposition from
the lecture, the first condition implies that I' = Zv, @ ... @& Zv,, for R-linearly
independent vy,...,v, € V. Let Vi := span(vy,...,v,) and write V =V} & V%
for some subspace Vo C V. Then we obtain a homeomorphism V/I" = V| /T x V3,
and it follows that dim V5 = 0, because V/I" is compact. In conclusion, the lattice
I' is complete.

. (Minkowski’s theorem on linear forms) Let
n
Li(xl,...,xn):Zaijxj, izl,...,n,
j=1

be real linear forms such that det(a;;) # 0, and let ¢4, ..., ¢, be positive real num-
bers such that ¢; - - - ¢, > | det(a;;)|. Show that there exist integers my, ..., m, € Z,
not all zero, such that for all i € {1,...,n}

]Li(ml, c ,mn)] < G;.

Hint: Use Minkowski’s lattice point theorem.



*5.

Solution: Let
X ={zeR"|Vie{l,...,n}:|Li(z)] < c}.

Then X is centrally symmetric, because the L; are linear. We want to show that
vol(X) > 2". Consider the matrix 7" := (a;;). Then

TX ={zeR"|Vie{l,...,n}:|L;(T'2)| < c;}
={zeR"|Vie{l,...,n}: |z <}

and thus vol(T'X) = 2"¢; - - - ¢,,. Also vol(T'X) = | det(T)| - vol(X) and therefore
vol(X) = 2%y -+ - ¢, - | det(T)| 7,

which by assumption is > 2", as desired. The conclusion then follows using
Minkowski’s lattice point theorem with the lattice Z™.

Consider a line £ := R - (1, a) in the plane R? with an irrational slope a € R \ Q.
Show that for any € > 0, there are infinitely many lattice points P € Z? of distance
d(P,0) < e.
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Solution: Consider the linear form Li(zq,x2) = el (x1 + axg). Then for

any point P € R? we have |L;(P)| = d(P,¢). Consider the second linear form
Lo(xq,29) := x9. Then Ly and Ls are linearly independent, so we can apply
Minkowski’s theorem on linear forms. For any ¢; > 0 choose ¢y > 0 such that the
inequality in Exercise 4 is satisfied. Thus there exists a lattice point P = (z1,z3) €
Z* ~ {(0,0)} with |Li(P)] < ¢;. Since a ¢ Q, we then have z; + axg # 0
and hence Li(P) # 0. Therefore 0 < d(P,{) < ¢;. Repeating the calculation
with d(P, /) in place of ¢; yields a second lattice point P’ € Z* \ {(0,0)} which
satisfies 0 < d(P',¢) < d(P,?¢). Iterating this we can thus produce lattice points
PP, P ... Z>~{0,0)} with ¢, > d(P,{) > d(P',¢) > d(P",{) > ... > 0.
The strict inequalities imply that these points are all distinct. Thus there exist
infinitely many points P € Z* \ {(0,0)} with d(P,{) < ¢;.




