D-MATH
Prof. Richard Pink

Solutions 2

Dedekind Rings and Lattices

1. Consider the number field $K:=\mathbb{Q}(\sqrt{-5})$ and its ring of integers $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-5}]$.
(a) Show that $(3)=\mathfrak{p p}^{\prime}$ with prime ideals $\mathfrak{p}:=(3,1+\sqrt{-5})$ and $\mathfrak{p}^{\prime}:=(3,1-\sqrt{-5})$.
(b) Determine the structure of the ring $\mathcal{O}_{K} /(3)$.
(c) Determine the inverse of \mathfrak{p} as a fractional ideal.
(d) Which powers of the ideal \mathfrak{p} are principal?
(e) Compute the factorization of (2) into prime ideals.
(f) Compute the factorization of (5) into prime ideals.
(g) Compute the factorization of (7) into prime ideals.

Solution:

(a) By definition the ideal $\mathfrak{p p}^{\prime}$ is generated by $3 \cdot 3=9$ and $3 \cdot(1 \pm \sqrt{-5})$ and $(1+\sqrt{-5}) \cdot(1-\sqrt{-5})=6$. Thus it contains $9-6=3$, which in turn divides all other generators; hence $\mathfrak{p p}^{\prime}=(3)$.
Since $1 \pm \sqrt{-5} \notin(3)$, both \mathfrak{p} and \mathfrak{p}^{\prime} properly contain (3). Therefore the formula $\mathfrak{p p}{ }^{\prime}=(3)$ also implies that both \mathfrak{p} and \mathfrak{p}^{\prime} are properly contained in \mathcal{O}_{K}. Since $\mathcal{O}_{K} /(3)$ has order 9 , it follows that the factor rings $\mathcal{O}_{K} / \mathfrak{p}$ and $\mathcal{O}_{K} / \mathfrak{p}^{\prime}$ both have order 3 . But any ring of order 3 is isomorphic to \mathbb{F}_{3} and hence a field; which implies that \mathfrak{p} and \mathfrak{p}^{\prime} are prime ideals.
(b) Since $2 \cdot(1+\sqrt{-5})+2 \cdot(1-\sqrt{-5})-3=1$ lies in $\mathfrak{p}+\mathfrak{p}^{\prime}$, the ideals \mathfrak{p} and \mathfrak{p}^{\prime} are coprime. By part (a) and the Chinese Remainder Theorem it follows that $\mathcal{O}_{K} /(3) \cong \mathcal{O}_{K} / \mathfrak{p} \times \mathcal{O}_{K} / \mathfrak{p}^{\prime} \cong \mathbb{F}_{3} \times \mathbb{F}_{3}$.
(c) The inverse fractional ideal of (3) is ($\frac{1}{3}$); hence (a) implies that $\mathfrak{p}^{-1}=\left(\frac{1}{3}\right) \cdot \mathfrak{p}^{\prime}=$ $\left(1, \frac{1-\sqrt{-5}}{3}\right)$.
(d) For any principal ideal $\mathfrak{a}=(a+b \sqrt{-5}) \subseteq \mathcal{O}_{K}$ we have $\left[\mathcal{O}_{K}: \mathfrak{a}\right]=\operatorname{Nm}(\mathfrak{a})=$ $\left|\mathrm{Nm}_{K / \mathbb{Q}}(a+b \sqrt{-5})\right|=a^{2}+5 b^{2}$. For all $a, b \in \mathbb{Z}$ this number is $\neq 3$. Since $\left[\mathcal{O}_{K}: \mathfrak{p}\right]=3$, it follows that \mathfrak{p} is not principal.
Next, the ideal \mathfrak{p}^{2} is generated by the elements $3 \cdot 3=9$ and $3 \cdot(1+\sqrt{-5})$ and $(1+\sqrt{-5})^{2}=-4+2 \sqrt{-5}$. Thus it also contains the smaller element

$$
9-3 \cdot(1+\sqrt{-5})+(-4+2 \sqrt{-5})=2-\sqrt{-5} .
$$

This obviously divides the third generator, and since $\operatorname{Nm}_{K / \mathbb{Q}}(2-\sqrt{-5})=$ $(2-\sqrt{-5}) \cdot(2+\sqrt{-5})=2^{2}+5=9$, it also divides the first generator. Since $3 \cdot(1+\sqrt{-5})+3 \cdot(2-\sqrt{-5})=9$, it therefore also divides the second generator; hence $\mathfrak{p}^{2}=(2-\sqrt{-5})$ is principal.
Together this shows that the ideal class of \mathfrak{p} in the class group $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ has order 2. Therefore \mathfrak{p}^{n} is principal if and only if n is even.
(e) Since $\mathcal{O}_{K} \cong \mathbb{Z}[X] /\left(X^{2}+5\right)$ with $\sqrt{-5}$ corresponding to the residue class of X, we have $\mathcal{O}_{K} /(2) \cong \mathbb{F}_{2}[X] /\left(X^{2}+5\right)$. Since $X^{2}+5=(1+X)^{2}$ in $\mathbb{F}_{2}[X]$, it follows that $\mathcal{O}_{K} /(2) \cong \mathbb{F}_{2}[X] /(1+X)^{2}$. This ring has the unique maximal ideal $(1+X) /(1+X)^{2}$, and the factor ring is $\mathbb{F}_{2} \cong \mathbb{F}_{2}[X] /(1+X) \cong \mathcal{O}_{K} / \mathfrak{q}$ for $\mathfrak{q}:=(2,1+\sqrt{-5})$. Thus \mathfrak{q} is a prime ideal. The isomorphism $\mathcal{O}_{K} /(2) \cong$ $\mathbb{F}_{2}[X] /(1+X)^{2}$ also shows that \mathfrak{q}^{2} maps to zero in $\mathcal{O}_{K} /(2)$; hence $\mathfrak{q}^{2} \subseteq(2)$. Since $\left[\mathcal{O}_{K}: \mathfrak{q}^{2}\right]=\left[\mathcal{O}_{K}: \mathfrak{q}\right]^{2}=2^{2}=\left[\mathcal{O}_{K}:(2)\right]$, it follows that $\mathfrak{q}^{2}=(2)$.
Note: In the same way as in (d) one can show that \mathfrak{q} is not a principal ideal. Aliter (using divisibility only): Trial computation shows that $(1+\sqrt{-5})^{2}=$ $2(2-\sqrt{-5})$ is divisible by 2 . Thus $1+\sqrt{-5}$ must be divisible by some prime ideal dividing (2), i.e., containing 2 , and so the ideal $\mathfrak{q}:=(2,1+\sqrt{-5})$ is also divisible by that prime ideal. On the other hand we have $1+\sqrt{-5} \notin$ $2 \mathbb{Z} \oplus 2 \mathbb{Z} \sqrt{-5}=(2)$. Together this implies that $(2) \varsubsetneqq \mathfrak{q} \varsubsetneqq \mathcal{O}_{K}$. Since $\left[\mathcal{O}_{K}:(2)\right]=4$, it follows that $\left[\mathcal{O}_{K}: \mathfrak{q}\right]=2$ and that \mathfrak{q} is a maximal ideal. In particular \mathfrak{q} is a prime ideal. Finally, the ideal \mathfrak{q}^{2} is generated by the elements $2 \cdot 2=4$ and $2 \cdot(1+\sqrt{-5})$ and $(1+\sqrt{-5})^{2}=-4+2 \sqrt{-5}$. Thus it also contains the element $-4+2 \cdot(1+\sqrt{-5})-(-4+2 \sqrt{-5})=2$. Since that in turn divides all other generators, it follows that $\mathfrak{q}^{2}=(2)$.
(f) Since $\sqrt{-5}^{2}=-5$, we have $(\sqrt{-5})=\mathbb{Z} \sqrt{-5} \oplus \mathbb{Z} 5$ and so $\mathcal{O}_{K} /(\sqrt{-5}) \cong \mathbb{F}_{5}$. As that is a field, the ideal $(\sqrt{-5})$ is a prime ideal. Moreover $(\sqrt{-5})^{2}=$ $(-5)=(5)$, and we are done.
(g) Since $\mathcal{O}_{K} \cong \mathbb{Z}[X] /\left(X^{2}+5\right)$, we have $\mathcal{O}_{K} /(7) \cong \mathbb{F}_{7}[X] /\left(X^{2}+5\right) \cong \mathbb{F}_{7}[X] /((X+$ $3)(X-3))$. This ring has the maximal ideals $\overline{\mathfrak{p}}_{1}:=(X-3) /\left(X^{2}+5\right)$ and $\overline{\mathfrak{p}}_{2}:=(X+3) /\left(X^{2}+5\right)$. Therefore $\mathfrak{p}_{1} \mid(7)$ and $\mathfrak{p}_{2} \mid(7)$ for the prime ideals $\mathfrak{p}_{1}:=(7,3-\sqrt{-5})$ and $\mathfrak{p}_{2}:=(7,3+\sqrt{-5})$. Since $\overline{\mathfrak{p}}_{1} \overline{\mathfrak{p}}_{2}=0$, it follows that (7)| $\mathfrak{p}_{1} \mathfrak{p}_{2}$ and hence $(7)=\mathfrak{p}_{1} \mathfrak{p}_{2}$.
2. Let A be a Dedekind domain.
(a) Show that for any non-zero ideal $\mathfrak{a} \subseteq A$, any ideal of A / \mathfrak{a} is principal.
(b) Show that every ideal of A is generated by two elements.

Solution: (a) As a preparation write $\mathfrak{a}=\mathfrak{p}_{1}^{\nu_{1}} \cdots \mathfrak{p}_{n}^{\nu_{n}}$ with distinct prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$. Then for each i we have $\mathfrak{p}_{i}^{2} \varsubsetneqq \mathfrak{p}_{i}$, so we can choose an element $p_{i} \in$ $\mathfrak{p}_{i}^{2} \backslash \mathfrak{p}_{i}$. Also, by the Chinese Remainder Theorem we have

$$
A / \mathfrak{p}_{1}^{2} \cdots \mathfrak{p}_{n}^{2} \xrightarrow{\sim} A / \mathfrak{p}_{1}^{2} \times \ldots \times A / \mathfrak{p}_{n}^{2}
$$

Thus there exists an element $\pi_{i} \in A$ whose residue class $\pi_{i}+\mathfrak{p}_{1}^{2} \cdots \mathfrak{p}_{n}^{2}$ corresponds to the tuple with entries $1+\mathfrak{p}_{j}^{2}$ for $j \neq i$ and entry $p_{i}+\mathfrak{p}_{i}^{2}$ for $j=i$. By construction this element satisfies $\operatorname{ord}_{\mathfrak{p}_{j}}\left(\pi_{i}\right)=\delta_{i j}$ for each j.
Now consider any ideal of A / \mathfrak{a}. We know that this has the form $\mathfrak{b} / \mathfrak{a}$ for an ideal \mathfrak{b} with $\mathfrak{a} \subseteq \mathfrak{b} \subseteq A$. Thus $\mathfrak{b}=\mathfrak{p}_{1}^{\mu_{1}} \cdots \mathfrak{p}_{n}^{\mu_{n}}$ with exponents $0 \leqslant \mu_{i} \leqslant \nu_{i}$. The element $b:=\pi_{1}^{\mu_{1}} \cdots \pi_{n}^{\mu_{n}}$ then satisfies $\operatorname{ord}_{\mathfrak{p}_{j}}(b)=\mu_{j}$ for each j. Also, any prime ideal dividing the ideal $\mathfrak{a}+(b)$ also divides \mathfrak{a} and is therefore one of the \mathfrak{p}_{j}, and $\operatorname{ord}_{\mathfrak{p}_{j}}(\mathfrak{a}+(b))=\min \left\{\operatorname{ord}_{\mathfrak{p}_{j}}(\mathfrak{a}), \operatorname{ord}_{\mathfrak{p}_{j}}(b)\right\}=\mu_{j}$. Thus $\mathfrak{a}+(b)=\mathfrak{p}_{1}^{\mu_{1}} \cdots \mathfrak{p}_{n}^{\mu_{n}}=\mathfrak{b}$, and so $\mathfrak{b} / \mathfrak{a}$ is generated by the residue class of b, as desired.
(b) Obviously the assertion holds for the zero ideal. For any non-zero ideal $\mathfrak{b} \subseteq A$ choose an element $a \in \mathfrak{b} \backslash\{0\}$; then by part (a) for the ring $A /(a)$ there exists an element $b \in A$ with $\mathfrak{b} /(a)=(b)+(a) /(a)$ and hence $\mathfrak{b}=(b, a)$, as desired.
3. Show that a subgroup Γ of a finite-dimensional \mathbb{R}-vector space V is a complete lattice if and only if Γ is discrete and V / Γ is compact.
Solution: Suppose that Γ is a complete lattice, i.e., that $\Gamma=\mathbb{Z} v_{1} \oplus \ldots \oplus \mathbb{Z} v_{n}$ for an \mathbb{R}-basis v_{1}, \ldots, v_{n} of V. Then we can identify V with \mathbb{R}^{n} such that $\Gamma=\mathbb{Z}^{n}$. Then Γ is discrete and we get homeomorphisms $V / \Gamma \cong \mathbb{R}^{n} / \mathbb{Z}^{n} \cong(\mathbb{R} / \mathbb{Z})^{n} \cong\left(S^{1}\right)^{n}$, which is compact (and Hausdorff).
Aliter: Then Γ is discrete by definition of the topology of V. Next we have $V=\Phi+\Gamma$ for $\Phi:=\left\{\sum x_{i} v_{i} \mid \forall i: 0 \leqslant x_{i} \leqslant 1\right\}$. Thus we obtain a continuous surjective map $\Phi \rightarrow V / \Gamma$. Since Φ is bounded and closed, it is compact; hence its image V / Γ is compact, too.
Conversely, suppose that Γ is discrete and V / Γ is compact. By a proposition from the lecture, the first condition implies that $\Gamma=\mathbb{Z} v_{1} \oplus \ldots \oplus \mathbb{Z} v_{m}$ for \mathbb{R}-linearly independent $v_{1}, \ldots, v_{m} \in V$. Let $V_{1}:=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$ and write $V=V_{1} \oplus V_{2}$ for some subspace $V_{2} \subseteq V$. Then we obtain a homeomorphism $V / \Gamma \cong V_{1} / \Gamma \times V_{2}$, and it follows that $\operatorname{dim} V_{2}=0$, because V / Γ is compact. In conclusion, the lattice Γ is complete.
4. (Minkowski's theorem on linear forms) Let

$$
L_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, n
$$

be real linear forms such that $\operatorname{det}\left(a_{i j}\right) \neq 0$, and let c_{1}, \ldots, c_{n} be positive real numbers such that $c_{1} \cdots c_{n}>\left|\operatorname{det}\left(a_{i j}\right)\right|$. Show that there exist integers $m_{1}, \ldots, m_{n} \in \mathbb{Z}$, not all zero, such that for all $i \in\{1, \ldots, n\}$

$$
\left|L_{i}\left(m_{1}, \ldots, m_{n}\right)\right|<c_{i} .
$$

Hint: Use Minkowski's lattice point theorem.

Solution: Let

$$
X:=\left\{\underline{x} \in \mathbb{R}^{n}\left|\forall i \in\{1, \ldots, n\}:\left|L_{i}(\underline{x})\right|<c_{i}\right\} .\right.
$$

Then X is centrally symmetric, because the L_{i} are linear. We want to show that $\operatorname{vol}(X)>2^{n}$. Consider the matrix $T:=\left(a_{i j}\right)$. Then

$$
\begin{aligned}
T X & =\left\{\underline{x} \in \mathbb{R}^{n}\left|\forall i \in\{1, \ldots, n\}:\left|L_{i}\left(T^{-1} \underline{x}\right)\right|<c_{i}\right\}\right. \\
& =\left\{\underline{x} \in \mathbb{R}^{n}\left|\forall i \in\{1, \ldots, n\}:\left|x_{i}\right|<c_{i}\right\}\right.
\end{aligned}
$$

and thus $\operatorname{vol}(T X)=2^{n} c_{1} \cdots c_{n}$. Also $\operatorname{vol}(T X)=|\operatorname{det}(T)| \cdot \operatorname{vol}(X)$ and therefore

$$
\operatorname{vol}(X)=2^{n} c_{1} \cdots c_{n} \cdot|\operatorname{det}(T)|^{-1}
$$

which by assumption is $>2^{n}$, as desired. The conclusion then follows using Minkowski's lattice point theorem with the lattice \mathbb{Z}^{n}.
*5. Consider a line $\ell:=\mathbb{R} \cdot(1, \alpha)$ in the plane \mathbb{R}^{2} with an irrational slope $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Show that for any $\varepsilon>0$, there are infinitely many lattice points $P \in \mathbb{Z}^{2}$ of distance $d(P, \ell)<\varepsilon$.
Solution: Consider the linear form $L_{1}\left(x_{1}, x_{2}\right):=\frac{1}{\sqrt{1+\alpha^{2}}} \cdot\left(x_{1}+\alpha x_{2}\right)$. Then for any point $P \in \mathbb{R}^{2}$ we have $\left|L_{1}(P)\right|=d(P, \ell)$. Consider the second linear form $L_{2}\left(x_{1}, x_{2}\right):=x_{2}$. Then L_{1} and L_{2} are linearly independent, so we can apply Minkowski's theorem on linear forms. For any $c_{1}>0$ choose $c_{2} \gg 0$ such that the inequality in Exercise 4 is satisfied. Thus there exists a lattice point $P=\left(x_{1}, x_{2}\right) \in$ $\mathbb{Z}^{2} \backslash\{(0,0)\}$ with $\left|L_{1}(P)\right|<c_{1}$. Since $\alpha \notin \mathbb{Q}$, we then have $x_{1}+\alpha x_{2} \neq 0$ and hence $L_{1}(P) \neq 0$. Therefore $0<d(P, \ell)<c_{1}$. Repeating the calculation with $d(P, \ell)$ in place of c_{1} yields a second lattice point $P^{\prime} \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ which satisfies $0<d\left(P^{\prime}, \ell\right)<d(P, \ell)$. Iterating this we can thus produce lattice points $P, P^{\prime}, P^{\prime \prime}, \ldots \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ with $c_{1}>d(P, \ell)>d\left(P^{\prime}, \ell\right)>d\left(P^{\prime \prime}, \ell\right)>\ldots>0$. The strict inequalities imply that these points are all distinct. Thus there exist infinitely many points $P \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ with $d(P, \ell)<c_{1}$.

